q-Stability conditions on Calabi-Yau-X categories

We introduce $q$-stability conditions $(\sigma,s)$ on Calabi-Yau-$\mathbb{X}$ categories $\mathcal{D}_\mathbb{X}$, where $\sigma$ is a stability condition on $\mathcal{D}_\mathbb{X}$ and $s$ a complex number. We prove the corresponding deformation theorem, that $\operatorname{QStab}_s\mathcal{D}_\mathbb{X}$ is a complex manifold of dimension $n$ for fixed $s$, where $n$ is the rank of the Grotendieck group of $\mathcal{D}_\mathbb{X}$ over $\mathbb{Z}[q^{\pm 1}]$. When $s=N$ is an integer, we show that the $q$-stability conditions can be identified with the stability conditions on $\mathcal{D}_N$, provided the orbit category $\mathcal{D}_N=\mathcal{D}_\mathbb{X}/[\mathbb{X}-N]$ is well defined. To attack the questions on existence and deformation along $s$ direction, we introduce the inducing method. Sufficient and necessary conditions are given, for a stability condition on an $\mathbb{X}$-baric heart (that is, an usual triangulated category) of $\mathcal{D}_\mathbb{X}$ to induce $q$-stability conditions on $\mathcal{D}_\mathbb{X}$. As a consequence, we show that the space $\operatorname{QStab}^\oplus\mathcal{D}_\mathbb{X}$ of (induced) open $q$-stability conditions is a complex manifold of dimension $n+1$. Our motivating examples for $\mathcal{D}_\mathbb{X}$ are coming from Calabi-Yau-$\mathbb{X}$ completions of dg algebras. In the case of smooth projective varieties, the $\mathbb{C}^*$-equivariant coherent sheaves on canonical bundles provide the Calabi-Yau-$\mathbb{X}$ categories. Another application is that we show the prefect derived categories can be realized as cluster-$\mathbb{X}$ categories for acyclic quivers.

[1]  Y. Qiu Contractible flow of stability conditions via global dimension function , 2020, 2008.00282.

[2]  Y. Qiu,et al.  Contractibility of space of stability conditions on the projective plane via global dimension function , 2020, 2001.11984.

[3]  D. Yang,et al.  Quotients of triangulated categories and equivalences of Buchweitz, Orlov, and Amiot-Guo-Keller , 2017, American Journal of Mathematics.

[4]  Y. Qiu,et al.  Stability conditions and the A2 quiver , 2014, Advances in Mathematics.

[5]  A. Takahashi,et al.  A FROBENIUS MANIFOLD FOR l-KRONECKER QUIVER , 2020 .

[6]  A. King,et al.  Cluster exchange groupoids and framed quadratic differentials , 2018, Inventiones mathematicae.

[7]  Y. Qiu Global dimension function, Gepner equations and $q$-stability conditions , 2018 .

[8]  D. Fiorenza,et al.  The (he)art of gluing , 2018, 1806.00883.

[9]  A. Polishchuk,et al.  Auslander orders over nodal stacky curves and partially wrapped Fukaya categories , 2017, Journal of Topology.

[10]  Martin Kalck,et al.  Derived categories of graded gentle one-cycle algebras , 2016, Journal of Pure and Applied Algebra.

[11]  Y. Qiu,et al.  Contractible stability spaces and faithful braid group actions , 2014, Geometry & Topology.

[12]  Akishi Ikeda Stability conditions on CYN categories associated to An-quivers and period maps , 2017 .

[13]  P. Seidel Picard–Lefschetz theory and dilating ℂ*‐actions , 2014, 1403.7571.

[14]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[15]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[16]  M. Kontsevich,et al.  Stability in Fukaya categories of surfaces , 2014 .

[17]  Y. Qiu Decorated marked surfaces: spherical twists versus braid twists , 2014, 1407.0806.

[18]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[19]  Yukinobu Toda Gepner type stability conditions on graded matrix factorizations , 2013, 1302.6293.

[20]  B. Keller On cluster theory and quantum dilogarithm identities , 2011, 1102.4148.

[21]  Arend Bayer,et al.  The space of stability conditions on the local projective plane , 2009, 0912.0043.

[22]  H. Uehara,et al.  Stability Conditions on An-Singularities , 2010 .

[23]  B. Keller,et al.  Deformed Calabi–Yau completions , 2009, 0908.3499.

[24]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[25]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[26]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[27]  P. Achar,et al.  Baric structures on triangulated categories and coherent sheaves , 2008, 0808.3209.

[28]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[29]  D. Orlov Remarks on generators and dimensions of triangulated categories , 2008, 0804.1163.

[30]  A. Takahashi,et al.  FROM PRIMITIVE FORMS TO FROBENIUS MANIFOLDS , 2008 .

[31]  T. Bridgeland Stability Conditions on a Non-Compact Calabi-Yau Threefold , 2005, math/0509048.

[32]  B. Keller On triangulated orbit categories , 2005, Documenta Mathematica.

[33]  I. Reiten,et al.  Tilting theory and cluster combinatorics , 2004, math/0402054.

[34]  Kyoji Saito Uniformization of the orbifold of a finite reflection group , 2004 .

[35]  B. Dubrovin ON ALMOST DUALITY FOR FROBENIUS MANIFOLDS , 2003, math/0307374.

[36]  T. Bridgeland Stability conditions on $K3$ surfaces , 2003, math/0307164.

[37]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[38]  V. T. Laredo Flat Connections and Quantum Groups , 2002 .

[39]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[40]  P. Newstead FROBENIUS MANIFOLDS, QUANTUM COHOMOLOGY, AND MODULI SPACES (American Mathematical Society Colloquium Publications 47) , 2000 .

[41]  M. Khovanov,et al.  Quivers, Floer cohomology, and braid group actions , 2000, math/0006056.

[42]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[43]  Yuri I. Manin,et al.  Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .

[44]  M. Kontsevich Homological Algebra of Mirror Symmetry , 1994, alg-geom/9411018.

[45]  Kyoji Saito,et al.  Period Mapping Associated to a Primitive Form , 1983 .

[46]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .