Vibration-energy-harvesting properties of hydrothermally synthesized (K,Na)NbO3 films deposited on flexible metal foil substrates

Energy-harvesting properties were investigated for the flexible piezoelectric devices, Pt/hydrothermally synthesized (K0.88Na0.12)NbO3/SrRuO3/metal foil, fabricated at low process temperatures below 300 °C. Fabricated devices had high flexibility, and cracking and peeling were not observed under the bending condition with the maximum curvature of 5.2 mm. The estimated Young’s modulus of the fabricated flexible devices was 37 GPa. The pulse poling treatment with AC voltage above 150 V enhanced the energy-harvesting properties. Although the dielectric constant was almost unchanged (εr = 120 at 200 Hz), the maximum output voltage measured at an acceleration of 10 m/s2 was observed at a resonance frequency of 126 Hz, and this voltage increased from 7.2 to 11 V after pulse poling treatment at 200 V. The maximum output power was 7.7 µW at a load resistance of 560 kΩ. The calculated Q and K2 values were 30 and 0.0014, respectively. The power density was 1.8 µW/(G2·mm3), which is higher than the previous reports for films and sintered bodies of (KxNa1−x) fabricated above 500 °C.

[1]  H. Funakubo,et al.  Structural and dielectric properties of BaTiO , 2014 .

[2]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[3]  M. Kurosawa,et al.  Composition dependency of crystal structure, electrical and piezoelectric properties for hydrothermally-synthesized 3 µm-thickness (KxNa1−x)NbO3 films , 2013 .

[4]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[5]  T. Morita,et al.  A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L=10 mm stator transducer) , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  S. A. Chavez,et al.  High-temperature tensile and creep data for Inconel 600, 304 stainless steel and SA106B carbon steel , 1994 .

[7]  S. Priya,et al.  Piezoelectric MEMS for energy harvesting , 2012 .

[8]  Kanwar Bharat Singh,et al.  Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires , 2012 .

[9]  H. Hida,et al.  Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3 Thin Films on Stainless Steel Cantilevers , 2013 .

[10]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[11]  T. Mishima,et al.  Evaluation of Crystal Orientation for (K,Na)NbO3 Films Using X-ray Diffraction Reciprocal Space Map and Relationship between Crystal Orientation and Piezoelectric Coefficient , 2012 .

[12]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[13]  Nae-Eung Lee,et al.  $\hbox{PbZr}_{x}\hbox{Ti}_{1 - x}\hbox{O}_{3}$ Ferroelectric Thin-Film Capacitors for Flexible Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[14]  J. Dougherty,et al.  Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates , 1992 .

[15]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[16]  W. Ensinger,et al.  Influence of different heat treatment programs on properties of sol–gel synthesized (Na0·5K0·5)NbO3 (KNN) thin films , 2012, Bulletin of Materials Science.

[17]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[18]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[19]  Khashayar Babaei Gavan,et al.  Size-dependent effective Young’s modulus of silicon nitride cantilevers , 2009 .

[20]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[21]  D. Chung,et al.  Effect of heating time below the melting temperature on polyphenylene sulfide adhesive joint development , 2000 .

[22]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[23]  S. Trolier-McKinstry,et al.  {001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils , 2014 .

[24]  M. Esashi,et al.  Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus , 2003 .

[25]  Henry A. Sodano,et al.  Model of a single mode energy harvester and properties for optimal power generation , 2008 .

[26]  Kazuhiko Adachi,et al.  Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters , 2012 .

[27]  Takashi Masuda,et al.  Ultra-Low Power Event-Driven Wireless Sensor Node Using Piezoelectric Accelerometer for Health Monitoring , 2009 .

[28]  Danick Briand,et al.  The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film , 2011 .

[29]  I. Kanno,et al.  Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate , 2013 .

[30]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[31]  Hidetoshi Kotera,et al.  Measurement of transverse piezoelectric properties of PZT thin films , 2003 .

[32]  Neil M. White,et al.  Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting , 2009 .

[33]  K. Yao,et al.  Effects of thickness on structures and electrical properties of K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution , 2012 .

[34]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[35]  S. Ishikawa,et al.  New material synthesis by radiation processing at high temperature—polymer modification with improved irradiation technology , 2002 .

[36]  G. Goh,et al.  Hydrothermal epitaxy of KNbO3 thin films and nanostructures , 2006 .

[37]  W. Ren,et al.  Effect of deposition temperature on orientation and electrical properties of (K0.5Na0.5)NbO3 thin films by pulsed laser deposition , 2012 .

[38]  P. C. Goh,et al.  THICKNESS-DEPENDENCE OF RESIDUAL STRESS IN LEAD-FREE FERROELECTRIC K0.5Na0.5NbO3 FILMS , 2012 .

[39]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[40]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[41]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[42]  Jingsi Xie,et al.  Cyclic energy harvesting from pyroelectric materials , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[44]  Shung-Wen Kang,et al.  Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe , 2009 .

[45]  K. Iwata,et al.  New Highly Heat-Resistant Polymers Containing Silicon: Poly(silyleneethynylenephenyleneethynylene)s , 1997 .

[46]  S. Pruvost,et al.  Energy harvesting by nonlinear capacitance variation for a relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer , 2011 .

[47]  M. Kurosawa,et al.  Ferroelectric and piezoelectric properties of (K,Na)NbO3 thick films prepared on metal substrates by hydrothermal method , 2013, Journal of the Korean Physical Society.

[48]  J. Zhai,et al.  Structure and dielectric properties of barium titanate thin films grown by sol-gel-hydrothermal process , 2006 .

[49]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[50]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.