Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.

[1]  J. Sodroski,et al.  Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication , 2008, Journal of Virology.

[2]  J. Briggs,et al.  Cryo Electron Tomography of Native HIV-1 Budding Sites , 2010, PLoS pathogens.

[3]  J. Doye,et al.  Monodisperse self-assembly in a model with protein-like interactions. , 2009, The Journal of chemical physics.

[4]  Wesley I. Sundquist,et al.  Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein , 2004, Journal of Virology.

[5]  E. Freed,et al.  Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants That Exhibit Aberrant Core Morphology and Are Blocked in Initiation of Reverse Transcription in Infected Cells , 2001, Journal of Virology.

[6]  Mark Yeager,et al.  The structural biology of HIV assembly. , 2008, Current opinion in structural biology.

[7]  J. Briggs,et al.  The molecular architecture of HIV. , 2011, Journal of molecular biology.

[8]  A. Gronenborn,et al.  Rhesus TRIM5α Disrupts the HIV-1 Capsid at the InterHexamer Interfaces , 2011, PLoS pathogens.

[9]  J. Sodroski,et al.  Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. , 2006, Virology.

[10]  R. Garcea,et al.  In vitro papillomavirus capsid assembly analyzed by light scattering. , 2004, Virology.

[11]  Peter V. Coveney,et al.  Gag-Pol Processing during HIV-1 Virion Maturation: A Systems Biology Approach , 2013, PLoS Comput. Biol..

[12]  G. Jensen,et al.  Unclosed HIV-1 capsids suggest a curled sheet model of assembly. , 2013, Journal of molecular biology.

[13]  “Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly” , 2016 .

[14]  S. Höglund,et al.  Functional domains of the capsid protein of human immunodeficiency virus type 1 , 1994, Journal of virology.

[15]  Ernest L. Yufenyuy,et al.  The NTD-CTD intersubunit interface plays a critical role in assembly and stabilization of the HIV-1 capsid , 2013, Retrovirology.

[16]  C. Carter,et al.  Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro , 1992, Journal of virology.

[17]  F. Förster,et al.  The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. , 2006, Structure.

[18]  W. Sundquist,et al.  HIV-1 assembly, budding, and maturation. , 2012, Cold Spring Harbor perspectives in medicine.

[19]  Charles D Schwieters,et al.  Structure and dynamics of full-length HIV-1 capsid protein in solution. , 2013, Journal of the American Chemical Society.

[20]  Gregory A Voth,et al.  Highly Scalable and Memory Efficient Ultra-Coarse-Grained Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[21]  J. Briggs,et al.  RNA and Nucleocapsid Are Dispensable for Mature HIV-1 Capsid Assembly , 2015, Journal of Virology.

[22]  D. Noble,et al.  Systems Biology: An Approach , 2010, Clinical pharmacology and therapeutics.

[23]  J. Sodroski,et al.  Hexagonal assembly of a restricting TRIM5α protein , 2010, Proceedings of the National Academy of Sciences.

[24]  D. Rapaport Role of reversibility in viral capsid growth: a paradigm for self-assembly. , 2008, Physical review letters.

[25]  D. Ott,et al.  Cellular proteins detected in HIV‐1 , 2008, Reviews in medical virology.

[26]  Marc C. Johnson,et al.  Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. , 2008, Cell host & microbe.

[27]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[28]  T. Kigawa,et al.  Contribution of E3-Ubiquitin Ligase Activity to HIV-1 Restriction by TRIM5αrh: Structure of the RING Domain of TRIM5α , 2011, Journal of Virology.

[29]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[30]  D. F. Evans,et al.  Fundamentals of Interfacial Engineering , 1996 .

[31]  J. Briggs,et al.  Induced Maturation of Human Immunodeficiency Virus , 2014, Journal of Virology.

[32]  A. Kaplan,et al.  The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions , 1994, Journal of virology.

[33]  A. Minton,et al.  Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. , 2005, Journal of pharmaceutical sciences.

[34]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[35]  J. Sodroski,et al.  Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. , 2007, Virology.

[36]  G. Voth,et al.  Early stages of the HIV-1 capsid protein lattice formation. , 2012, Biophysical journal.

[37]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[38]  G. Rivas,et al.  Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface. , 2013, Biophysical journal.

[39]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[40]  T. Shioda,et al.  Anti‐retroviral activity of TRIM5α , 2010, Reviews in medical virology.

[41]  J. Neil,et al.  Intracellular water‐specific MR of microbead‐adherent cells: the HeLa cell intracellular water exchange lifetime , 2008, NMR in biomedicine.

[42]  Grant J Jensen,et al.  Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. , 2005, Journal of molecular biology.

[43]  S. Kutluay,et al.  Fates of Retroviral Core Components during Unrestricted and TRIM5-Restricted Infection , 2013, PLoS pathogens.

[44]  H. Kräusslich,et al.  In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. , 1999, Virology.

[45]  Iain G. Johnston,et al.  Modelling the self-assembly of virus capsids , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  J. Sodroski,et al.  Modulation of Retroviral Restriction and Proteasome Inhibitor-Resistant Turnover by Changes in the TRIM5α B-Box 2 Domain , 2007, Journal of Virology.

[47]  Wesley I. Sundquist,et al.  Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication , 2002, Journal of Virology.

[48]  Anchi Cheng,et al.  Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice , 2007, Cell.

[49]  J. Doye,et al.  Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. , 2006, The Journal of chemical physics.

[50]  J. Sodroski,et al.  The Contribution of RING and B-box 2 Domains to Retroviral Restriction Mediated by Monkey TRIM5α* , 2005, Journal of Biological Chemistry.

[51]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[52]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[53]  Mark Yeager,et al.  Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. , 2010, Journal of molecular biology.

[54]  D. Chandler,et al.  Dynamic pathways for viral capsid assembly. , 2005, Biophysical journal.

[55]  R. Tycko,et al.  Simulated self-assembly of the HIV-1 capsid: protein shape and native contacts are sufficient for two-dimensional lattice formation. , 2011, Biophysical journal.

[56]  Vijay S Reddy,et al.  Invariant polymorphism in virus capsid assembly. , 2009, Journal of the American Chemical Society.

[57]  Peijun Zhang,et al.  Structural Convergence between Cryo-EM and NMR Reveals Intersubunit Interactions Critical for HIV-1 Capsid Function , 2009, Cell.

[58]  C. Brooks,et al.  Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. , 2007, Nano letters (Print).

[59]  Christopher L. Fillmore,et al.  Electron cryotomography of immature HIV‐1 virions reveals the structure of the CA and SP1 Gag shells , 2007, The EMBO journal.

[60]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Fangqiang Zhu,et al.  Mechanism of polymorphism and curvature of HIV capsid assemblies probed by 3D simulations with a novel coarse grain model. , 2015, Biochimica et biophysica acta.

[62]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[63]  Xiaohong Liu,et al.  A trimer of dimers is the basic building block for human immunodeficiency virus-1 capsid assembly. , 2012, Biochemistry.

[64]  Gregory R. Smith,et al.  Applying molecular crowding models to simulations of virus capsid assembly in vitro. , 2013, Biophysical journal.

[65]  G. Jensen,et al.  Electron Cryotomography Studies of Maturing HIV-1 Particles Reveal the Assembly Pathway of the Viral Core , 2014, Journal of Virology.

[66]  Mark Yeager,et al.  Atomic-level modelling of the HIV capsid , 2011 .

[67]  M. Hagan Modeling Viral Capsid Assembly. , 2013, Advances in chemical physics.

[68]  S. Höglund,et al.  Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis , 1994, Journal of virology.

[69]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[70]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[71]  Mauricio G. Mateu,et al.  Effect of Macromolecular Crowding Agents on Human Immunodeficiency Virus Type 1 Capsid Protein Assembly In Vitro , 2005, Journal of Virology.

[72]  L. Arthur,et al.  Cytoskeletal proteins inside human immunodeficiency virus type 1 virions , 1996, Journal of virology.