A higher‐order extended finite element method for dislocation energetics in strained layers and epitaxial islands

This paper presents a higher‐order method for modeling dislocations with the extended finite element method (XFEM). This method is applicable to complex geometries, interfaces with lattice mismatch strains, and both anisotropic and spatially non‐uniform material properties. A numerical procedure for computing the J‐integral around a dislocation core to determine the energy release rate for a virtual advance of the dislocation line is described. Several examples in three dimensions illustrate the applicability of this method to material interfaces and semiconductor heterostructures, specifically the computation of the energetics of systems of dislocations in SiGe islands deposited on pure Si substrates. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Christopher J. Earls,et al.  International Journal for Numerical Methods in Engineering , 2009 .

[2]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .

[3]  Ted Belytschko,et al.  An extended finite element method for dislocations in complex geometries: Thin films and nanotubes , 2009 .

[4]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[5]  Anna Marzegalli,et al.  Modeling the plastic relaxation onset in realistic SiGe islands on Si(001) , 2008 .

[6]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[7]  F. Uhlík,et al.  Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy , 2008 .

[8]  O. Schmidt,et al.  Critical shape and size for dislocation nucleation in Si1-xGex islands on Si(001). , 2007, Physical review letters.

[9]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[10]  Ted Belytschko,et al.  A new fast finite element method for dislocations based on interior discontinuities , 2007 .

[11]  J. Tersoff,et al.  Local equilibrium and global relaxation of strained SiGe/Si(001) layers , 2006 .

[12]  O. Schmidt,et al.  Dendrochronology of strain-relaxed islands. , 2006, Physical review letters.

[13]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[14]  Kenji Shimada,et al.  Skeleton-based computational method for the generation of a 3D finite element mesh sizing function , 2004, Engineering with Computers.

[15]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[16]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[17]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[18]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[19]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[20]  E. Kaxiras,et al.  SEMIDISCRETE VARIATIONAL PEIERLS FRAMEWORK FOR DISLOCATION CORE PROPERTIES , 1997 .

[21]  L. Freund,et al.  Mechanics of coherent and dislocated island morphologies in strained epitaxial material systems , 1997 .

[22]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[23]  J. Tersoff,et al.  Interaction of threading and misfit dislocations in a strained epitaxial layer , 1996 .

[24]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[25]  L. P. Kubin,et al.  The modelling of dislocation patterns , 1992 .

[26]  N. Ghoniem,et al.  Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.

[27]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[28]  Brian Moran,et al.  Energy release rate along a three-dimensional crack front in a thermally stressed body , 1986, International Journal of Fracture.

[29]  A. K. Head,et al.  Edge Dislocations in Inhomogeneous Media , 1953 .

[30]  H. J. Mcskimin Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves–Data for Silicon and Germanium Single Crystals, and for Fused Silica , 1953 .

[31]  Ted Belytschko,et al.  On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation , 2008 .

[32]  T. Belytschko,et al.  A first course in finite elements , 2007 .

[33]  Vito Volterra,et al.  Sur l'équilibre des corps élastiques multiplement connexes , 1907 .