High-Temperature Nano-Indentation Creep of Reduced Activity High Entropy Alloys Based on 4-5-6 Elemental Palette

There is a strong demand for materials with inherently high creep resistance in the harsh environment of next-generation nuclear reactors. High entropy alloys have drawn intense attention in this regard due to their excellent elevated temperature properties and irradiation resistance. Here, the time-dependent plastic deformation behavior of two refractory high entropy alloys was investigated, namely HfTaTiVZr and TaTiVWZr. These alloys are based on reduced activity metals from the 4-5-6 elemental palette that would allow easy post-service recycling after use in nuclear reactors. The creep behavior was investigated using nano-indentation over the temperature range of 298 K to 573 K under static and dynamic loads up to 5 N. Creep stress exponent for HfTaTiVZr and TaTiVWZr was found to be in the range of 20–140 and the activation volume was ~16–20b3, indicating dislocation dominated mechanism. The stress exponent increased with increasing indentation depth due to a higher density of dislocations and their entanglement at larger depth and the exponent decreased with increasing temperature due to thermally activated dislocations. Smaller creep displacement and higher activation energy for the two high entropy alloys indicate superior creep resistance compared to refractory pure metals like tungsten.

[1]  P. Huang,et al.  Depth dependent strain rate sensitivity and inverse indentation size effect of hardness in body-centered cubic nanocrystalline metals , 2014 .

[2]  Y. Wu,et al.  High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy , 2017 .

[3]  S. Mukherjee,et al.  Activation Volume and Energy for Dislocation Nucleation in Multi-Principal Element Alloys , 2019, Metals.

[4]  Lu Shen,et al.  Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation , 2017, Journal of Materials Science: Materials in Electronics.

[5]  S. Mukherjee,et al.  Strain rate sensitivity of a novel refractory high entropy alloy: Intrinsic versus extrinsic effects , 2019, Materials Science and Engineering: A.

[6]  M. D. Mathew,et al.  Creep deformation characteristics of tin and tin-based electronic solder alloys , 2005 .

[7]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[8]  S. Tin,et al.  HIGH TEMPERATURE NANOINDENTATION OF NI-BASE SUPERALLOYS , 2008 .

[9]  W. Blum,et al.  Deformation kinetics of nanocrystalline nickel , 2007 .

[10]  H. Oikawa,et al.  On the stress exponent and the rate-controlling mechanism of high-temperature creep in some solid solutions , 1974, Metallurgical and Materials Transactions B.

[11]  G. Peng,et al.  Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures , 2016 .

[12]  S. Mukherjee,et al.  Strain Gradient Plasticity in Multiprincipal Element Alloys , 2019, JOM.

[13]  W. H. Li,et al.  The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation , 2008 .

[14]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[15]  G. Pharr,et al.  Characterization of power-law creep in the solid-acid CsHSO4 via nanoindentation , 2019, Journal of Materials Research.

[16]  Indrajit Charit,et al.  Structural materials for Gen-IV nuclear reactors: Challenges and opportunities , 2008 .

[17]  P. Liaw,et al.  Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy , 2016, Metallurgical and Materials Transactions A.

[18]  H. Bei,et al.  Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys , 2012 .

[19]  Dong-Hyun Lee,et al.  Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys , 2016 .

[20]  A. Ngan,et al.  Size effects of nanoindentation creep , 2004 .

[21]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[22]  E. Koumoulos,et al.  A study on time dependent properties of aluminum alloy by nanoindentation technique , 2013 .

[23]  Y. Foo,et al.  Nanoindentation creep of tin and aluminium: A comparative study between constant load and constant strain rate methods , 2012 .

[24]  T. Clyne,et al.  A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature , 2006 .

[25]  W. Oliver,et al.  A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum , 2016 .

[26]  Amin H. Almasri,et al.  Effect of Strain Rate on the Dynamic Hardness in Metals , 2007 .

[27]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[28]  Ping Gu,et al.  Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy , 2018, Entropy.

[29]  Rajiv S. Mishra,et al.  Small-Scale Plastic Deformation of Nanocrystalline High Entropy Alloy , 2018, Entropy.

[30]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[31]  Santanu Das,et al.  Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy , 2015 .

[32]  Hong Wu,et al.  Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy , 2016 .

[33]  Peng Zhou,et al.  Nanoindentation study on the room temperature creep characteristics of a senary Ti 16.7 Zr 16.7 Hf 16.7 Cu 16.7 Ni 16.7 Be 16.7 high entropy bulk metallic glass , 2017 .

[34]  Shou-Yi Chang,et al.  Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings , 2010 .

[35]  Jun Sun,et al.  Nanoindentation creep behavior of Cu–Zr metallic glass films , 2018 .

[36]  S. Hong,et al.  Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures , 2018, Materials Research Letters.

[37]  M. Göken,et al.  An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures , 2013 .

[38]  R. Abernethy Predicting the performance of tungsten in a fusion environment: a literature review , 2017 .

[39]  S. Mukherjee,et al.  Low activation high entropy alloys for next generation nuclear applications , 2018, Materialia.

[40]  R. Schwaiger,et al.  Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation , 2017 .

[41]  Juyoung Kim,et al.  Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses , 2013 .

[42]  C. Schuh,et al.  Temperature dependence of the indentation size effect , 2010 .

[43]  C. Liu,et al.  Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi , 2014 .

[44]  D. H. Wen,et al.  Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states , 2015 .

[45]  J. Shen,et al.  Indentation creep of a Ti-based metallic glass , 2009 .

[46]  S. Mukherjee,et al.  Ion irradiation response and mechanical behavior of reduced activity high entropy alloy , 2020 .

[47]  C. Kuo,et al.  The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy , 2017, Scientific Reports.

[48]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .