Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes

The crystal growth behaviour of solid phase halides encapsulated within single walled carbon nanotubes (SWNTs) is reviewed. As SWNTs form atomically thin channels within a restricted diameter range, their internal van der Waals surfaces regulate the growth behaviour of encapsulated materials in a very precise fashion. Crystal growth within SWNTs is therefore atomically regulated and nano-scale crystals with precise integral layer architectures (i.e. ‘Feynman Crystals’) can be formed. The structural properties of the resulting 1D crystals are principally dictated by the structural chemistry of the bulk material although deviations from bulk crystal growth behaviour are observed. Alternatively, 1D crystals with completely novel structures can form inside SWNTs. Where the encapsulated crystal has a structure recognizably related to that of the bulk material, crystals are formed with lower surface coordination and all exhibit substantial lattice distortions as a result of this reduced coordination and/or van der Waals constriction effects. 1D crystal growth within SWNTs is occasionally impeded by the presence of simultaneously incorporated fullerene molecules.

[1]  Malcolm L. H. Green,et al.  Direct imaging of o-carborane molecules within single walled carbon nanotubes. , 2002, Chemical communications.

[2]  Angus I. Kirkland,et al.  A new method for the determination of the wave aberration function for high resolution TEM , 2002 .

[3]  Malcolm L. H. Green,et al.  Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review , 2002 .

[4]  Malcolm L. H. Green,et al.  Metastable one-dimensional AgCl(1)-(x)I(x) solid-solution wurzite "tunnel" crystals formed within single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[5]  G. Stucky,et al.  Mesoporous and Mesostructured Materials for Optical Applications , 2001 .

[6]  David E. Luzzi,et al.  Electron irradiation effects in single wall carbon nanotubes , 2001 .

[7]  S. Iijima,et al.  Real time reaction dynamics in carbon nanotubes. , 2001, Journal of the American Chemical Society.

[8]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[9]  M. Monthioux,et al.  Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air , 2001 .

[10]  M. Weller Where zeolites and oxides merge: semi-condensed tetrahedral frameworks , 2001 .

[11]  P. Madden,et al.  Growth of ionic crystals in carbon nanotubes. , 2001, Journal of the American Chemical Society.

[12]  C Colliex,et al.  Element-selective single atom imaging. , 2000, Science.

[13]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[14]  David E. Luzzi,et al.  Tumbling atoms and evidence for charge transfer in La2@C80@SWNT , 2000 .

[15]  M. Jenkins,et al.  Characterisation of Radiation Damage by Transmission Electron Microscopy , 2000 .

[16]  Malcolm L. H. Green,et al.  Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes , 2000 .

[17]  Kirkland,et al.  Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.

[18]  Takayanagi,et al.  Synthesis and characterization of helical multi-shell gold nanowires , 2000, Science.

[19]  Thomas,et al.  Molecular mechanisms of crystallization and defect formation , 2000, Physical review letters.

[20]  Eklund,et al.  Atomic arrangement of iodine atoms inside single-walled carbon nanotubes , 2000, Physical review letters.

[21]  David E. Luzzi,et al.  Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis , 2000 .

[22]  J. Pethica,et al.  Manipulation of atoms across a surface at room temperature , 2000, Nature.

[23]  Malcolm L. H. Green,et al.  The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes , 2000 .

[24]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[25]  T. Nagao,et al.  Structure of C 60 layers on the Si ( 111 ) − 3 × 3 − Ag surface , 1999 .

[26]  C. Kiang,et al.  Molecular Nanowires of 1 nm Diameter from Capillary Filling of Single-Walled Carbon Nanotubes. , 1999 .

[27]  F. Banhart,et al.  Irradiation effects in carbon nanostructures , 1999 .

[28]  Z. Gu,et al.  Defects in arc-discharge-produced single-walled carbon nanotubes , 1999 .

[29]  J. Ying,et al.  Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires , 1999 .

[30]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[31]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[32]  Malcolm L. H. Green,et al.  Selective Deposition of UCl4and (KCl)x(UCl4)yinside Carbon Nanotubes Using Eutectic and Noneutectic Mixtures of UCl4with KCl , 1998 .

[33]  Ge,et al.  Ordering of ruthenium cluster carbonyls in mesoporous silica , 1998, Science.

[34]  R. McKendry,et al.  Chiral discrimination by chemical force microscopy , 1998, Nature.

[35]  A. Steel,et al.  Solvent Exclusion and Chemical Contrast in Scanning Force Microscopy , 1996 .

[36]  T. Ebbesen Wetting, filling and decorating carbon nanotubes , 1996 .

[37]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[38]  Charles M. Lieber,et al.  Chemical Force Microscopy: Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional Group Distributions in Molecular Assemblies , 1995 .

[39]  J. Leger,et al.  The post-cotunnite phase in BaCl2, BaBr2 and BaI2 under high pressure , 1995 .

[40]  P. Ajayan,et al.  Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures , 1995, Nature.

[41]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[42]  P. Ajayan,et al.  Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis , 1993 .

[43]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[44]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[45]  Malcolm L. H. Green,et al.  Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , 1993, Nature.

[46]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[47]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[48]  J. Frommer,et al.  Friction measurements on phase-separated thin films with a modified atomic force microscope , 1992, Nature.

[49]  W. M. Meier,et al.  Atlas of Zeolite Structure Types , 1988 .

[50]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[51]  H. Beck A structure refinement of the high pressure modification BaI2-II , 1983 .

[52]  C. Catlow,et al.  Irradiation-induced defects in alkali halide crystals , 1980 .

[53]  G. Fryburg,et al.  EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces , 1975 .

[54]  G. S. Smith,et al.  Refinement of the crystal structure of ThCl4 , 1969 .

[55]  B. Krebs Kristallstruktur von Zirkonium(IV)-chlorid: Ein neuer AB4-Strukturtyp , 1969 .

[56]  Malcolm L. H. Green,et al.  Complete characterisation of a Sb2O3/(21,−8)SWNT inclusion composite , 2001 .

[57]  Malcolm L. H. Green,et al.  Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes , 2001 .

[58]  Malcolm L. H. Green,et al.  1D lanthanide halide crystals inserted into single-walled carbon nanotubes , 2000 .

[59]  Rodney S. Ruoff,et al.  Fullerenes : chemistry, physics, and technology , 2000 .

[60]  Malcolm L. H. Green,et al.  Capillarity and silver nanowire formation observed in single walled carbon nanotubes , 1999 .

[61]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[62]  Malcolm L. H. Green,et al.  The opening and filling of single walled carbon nanotubes (SWTs) , 1998 .

[63]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[64]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[65]  R. Sass,et al.  THE CRYSTAL STRUCTURES OF BARIUM CHLORIDE, BARIUM BROMIDE, AND BARIUM IODIDE , 1963 .

[66]  W. M. Meier,et al.  36. Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues , 1959 .