Thrust Control Of An Electric Propulsion Space Vehicle With Minimal Fuel Consumption

Abstract The objective of this research is to develop a heuristic process to obtain a near optimal control strategy for an electric-propulsion spacecraft. The work reported here in particular uses a genetic algorithm (GA) to develop a control profile for an ionic thruster for a spacecraft such as the Jupiter Icy Moons Orbiter (JIMO), although the methodology could be used for any deep-space mission using ionic thrusters. The spacecraft's mission is to travel between two points in space with high fuel efficiency, to intercept the tazget at the end of the predefined time frame with a predefined velocity, and to satisfy certain constraints on thrusting or coasting duration. Control strategies are represented as chromosomes, and a GA is used to fmd the best chromosome among the candidate solutions. By using intermittent low thrusts, simulations have JIMO satisfying mission objectives. The fitness function used to obtain the control strategies minimizes the final-state error and the fuel consumption; this func...

[1]  Jeng-Shing Chern,et al.  Optimal vertical ascent to GEO with thrust acceleration and dynamic pressure constraints , 1995 .

[2]  A.C. Esterline,et al.  Minimal fuel consumption of electric propulsion space vehicles for deep space exploration , 2006, 2006 IEEE Aerospace Conference.

[3]  Anastassios E. Petropoulos,et al.  Automated Design of Low-Thrust Gravity-Assist Trajectories , 2000 .

[4]  J. Kare,et al.  Pulsed laser propulsion for low cost, high volume launch to orbit , 1989 .

[5]  Jeng-Shing Chern,et al.  Overall payload ratio of a combined laser and chemical propulsion system for geo launch , 2002 .

[6]  Victoria Coverstone-Carroll,et al.  Near-Optimal Low-Thrust Trajectories via Micro-Genetic Algorithms , 1997 .

[7]  A. Axelrod,et al.  Optimal Control of Interplanetary Trajectories Using Electrical Propulsion with Discrete Thrust Levels , 2000 .

[8]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[9]  Y. B. Shtessel,et al.  Reusable launch vehicle trajectory control in sliding modes , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Lance D. Chambers,et al.  Practical Handbook of Genetic Algorithms , 1995 .

[12]  J. Longuski,et al.  Design and Optimization of Low-Thrust Gravity-Assist Trajectories to Selected Planets , 2002 .

[13]  A.C. Esterline,et al.  Velocity Control of Electric Propulsion Space Vehicles Using Heliocentric Gravitational Sling , 2006, 2006 World Automation Congress.

[14]  Steven N. Williams,et al.  Mars Missions Using Solar Electric Propulsion , 2000 .

[15]  Anastassios E. Petropoulos,et al.  Shape-Based Algorithm for Automated Design of Low-Thrust, Gravity-Assist Trajectories , 2004 .

[16]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[17]  Y. B. Shtessel,et al.  Reusable launch vehicle attitude control using a time-varying sliding mode control technique , 2002, Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540).

[18]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[19]  N. Vinh Optimal trajectories in atmospheric flight , 1981 .