Chromatin Accessibility-Based Characterization of the Gene Regulatory Network Underlying Plasmodium falciparum Blood-Stage Development

Summary Underlying the development of malaria parasites within erythrocytes and the resulting pathogenicity is a hardwired program that secures proper timing of gene transcription and production of functionally relevant proteins. How stage-specific gene expression is orchestrated in vivo remains unclear. Here, using the assay for transposase accessible chromatin sequencing (ATAC-seq), we identified ∼4,000 regulatory regions in P. falciparum intraerythrocytic stages. The vast majority of these sites are located within 2 kb upstream of transcribed genes and their chromatin accessibility pattern correlates positively with abundance of the respective mRNA transcript. Importantly, these regions are sufficient to drive stage-specific reporter gene expression and DNA motifs enriched in stage-specific sets of regulatory regions interact with members of the P. falciparum AP2 transcription factor family. Collectively, this study provides initial insights into the in vivo gene regulatory network of P. falciparum intraerythrocytic stages and should serve as a valuable resource for future studies.

[1]  William Stafford Noble,et al.  Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression , 2014, Genome research.

[2]  Masao Yuda,et al.  Global transcriptional repression: An initial and essential step for Plasmodium sexual development , 2015, Proceedings of the National Academy of Sciences.

[3]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[4]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[5]  Alejandro Ochoa,et al.  Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite , 2016, Scientific Reports.

[6]  Simon J. van Heeringen,et al.  GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments , 2010, Bioinform..

[7]  J. Derisi,et al.  Genome-wide regulatory dynamics of translation in the Plasmodium falciparum asexual blood stages , 2014, eLife.

[8]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[9]  D. Wirth,et al.  Patterns of Gene-Specific and Total Transcriptional Activity during the Plasmodium falciparum Intraerythrocytic Developmental Cycle , 2009, Eukaryotic Cell.

[10]  Todd M. Gierahn,et al.  Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[11]  J. Rayner,et al.  A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle , 2017, Cell host & microbe.

[12]  Richard D Emes,et al.  Triaging informative cis-regulatory elements for the combinatorial control of temporal gene expression during Plasmodium falciparum intraerythrocytic development , 2015, Parasites & Vectors.

[13]  K. Anamika,et al.  Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum , 2017, BMC Genomics.

[14]  Masao Yuda,et al.  Identification of a transcription factor in the mosquito‐invasive stage of malaria parasites , 2009, Molecular microbiology.

[15]  S. Lonardi,et al.  Supplemental Material to : Nucleosome landscape and control of transcription in the human malaria parasite , 2009 .

[16]  S. Lonardi,et al.  Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite , 2011, BMC Genomics.

[17]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[18]  Manuel Llinás,et al.  Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. , 2017, Cell host & microbe.

[19]  Danny W. Wilson,et al.  A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression. , 2015, Cell host & microbe.

[20]  Keira A Wiechecki,et al.  Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices , 2019, eLife.

[21]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[22]  I. Kobayashi,et al.  Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor , 2015, PLoS pathogens.

[23]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[24]  Jacques Prudhomme,et al.  Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum , 2017, Nucleic acids research.

[25]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[26]  Howard Y. Chang,et al.  Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells , 2017, Nature Genetics.

[27]  S. Iwanaga,et al.  Identification of an AP2-family Protein That Is Critical for Malaria Liver Stage Development , 2012, PloS one.

[28]  J. Parkinson,et al.  Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA , 2017, Nature Microbiology.

[29]  N. Friedman,et al.  Chromatin state dynamics during blood formation , 2014, Science.

[30]  D. Kwiatkowski,et al.  A transcriptional switch underlies commitment to sexual development in human malaria parasites , 2014, Nature.

[31]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[32]  E. Segal,et al.  In pursuit of design principles of regulatory sequences , 2014, Nature Reviews Genetics.

[33]  M. Berriman,et al.  The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences , 2015, Nucleic acids research.

[34]  Catherine Vaquero,et al.  PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. , 2005, Journal of molecular biology.

[35]  Teun Bousema,et al.  A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes , 2015, Scientific Reports.

[36]  Richard Bartfai,et al.  A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology , 2010, PLoS pathogens.

[37]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[38]  Ellen Bushell,et al.  A cascade of DNA binding proteins for sexual commitment and development in Plasmodium , 2014, Nature.

[39]  K. Haldar,et al.  An enhancer-like region regulates hrp3 promoter stage-specific gene expression in the human malaria parasite Plasmodium falciparum. , 2007, Biochimica et biophysica acta.

[40]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[41]  Reinout Raijmakers,et al.  Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics , 2009, Nature Protocols.

[42]  H. Stunnenberg,et al.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 , 2010, PLoS pathogens.

[43]  D. Fidock,et al.  Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[45]  Catherine Vaquero,et al.  In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum , 2010, BMC Genomics.

[46]  X. Su,et al.  Systematic CRISPR-Cas9-Mediated Modifications of Plasmodium yoelii ApiAP2 Genes Reveal Functional Insights into Parasite Development , 2017, mBio.

[47]  R. Bártfai,et al.  H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum , 2016, Scientific Reports.

[48]  S. Hahn,et al.  Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators , 2011, Genetics.

[49]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[50]  Manuel Llinás,et al.  Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite , 2010, PLoS pathogens.

[51]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[52]  Zbynek Bozdech,et al.  Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum* , 2011, Molecular & Cellular Proteomics.

[53]  A. Cowman,et al.  Malaria: Biology and Disease , 2016, Cell.

[54]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[55]  Yingyao Zhou,et al.  In silico discovery of transcription regulatory elements in Plasmodium falciparum , 2008, BMC Genomics.

[56]  M. Huynen,et al.  Combinatorial gene regulation in Plasmodium falciparum. , 2006, Trends in genetics : TIG.

[57]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[58]  N. Slonim,et al.  A universal framework for regulatory element discovery across all genomes and data types. , 2007, Molecular cell.

[59]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[60]  C. Bourgouin,et al.  High-Mobility-Group Box Nuclear Factors of Plasmodium falciparum , 2006, Eukaryotic Cell.

[61]  D. Wirth,et al.  Identification of regulatory elements in the Plasmodium falciparum genome. , 2004, Molecular and biochemical parasitology.

[62]  Haiming Wang,et al.  GeneDB—an annotation database for pathogens , 2011, Nucleic Acids Res..

[63]  Manuel Llinás,et al.  The Apicomplexan AP2 family: integral factors regulating Plasmodium development. , 2011, Molecular and biochemical parasitology.

[64]  H. Stunnenberg,et al.  A quantitative proteomics tool to identify DNA-protein interactions in primary cells or blood. , 2015, Journal of proteome research.

[65]  Michael B. Stadler,et al.  Gene bivalency at Polycomb domains regulates cranial neural crest positional identity , 2017, Science.

[66]  X. Su,et al.  Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation , 2013, Molecular microbiology.

[67]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[68]  Blaise T. F. Alako,et al.  Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum , 2009, Proceedings of the National Academy of Sciences.

[69]  Imran Ullah,et al.  Functional analysis of the 5' untranslated region of the phosphoglutamase 2 transcript in Plasmodium falciparum. , 2013, Acta tropica.

[70]  Kathrin Witmer,et al.  Identification of a cis-acting DNA–protein interaction implicated in singular var gene choice in Plasmodium falciparum , 2012, Cellular microbiology.

[71]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[72]  Virander S. Chauhan,et al.  Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases , 2008, BMC Molecular Biology.

[73]  Christina S. Leslie,et al.  SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps , 2015, PLoS Comput. Biol..

[74]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[75]  Zbynek Bozdech,et al.  Epigenetic memory takes center stage in the survival strategy of malaria parasites. , 2014, Current opinion in microbiology.

[76]  Graham F Hatfull,et al.  Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase , 2006, Nature Methods.

[77]  W. Reznikoff,et al.  Tn5/IS50 target recognition. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[79]  Simon J. van Heeringen,et al.  fluff: exploratory analysis and visualization of high-throughput sequencing data , 2016, bioRxiv.

[80]  H. Stunnenberg,et al.  H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome , 2013, Molecular microbiology.