Helicases: a unifying structural theme?

[1]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[2]  M. Schliwa,et al.  Reversal in the direction of movement of a molecular motor , 1997, Nature.

[3]  Gabriel Waksman,et al.  Major Domain Swiveling Revealed by the Crystal Structures of Complexes of E. coli Rep Helicase Bound to Single-Stranded DNA and ADP , 1997, Cell.

[4]  Hu Pan,et al.  Characterization and crystallization of the helicase domain of bacteriophage T7 gene 4 protein , 1997, Nucleic Acids Res..

[5]  A. Kwong,et al.  Structure of the hepatitis C virus RNA helicase domain , 1997, Nature Structural Biology.

[6]  M. Hingorani,et al.  The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Gold,et al.  RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. , 1997, Nucleic acids research.

[8]  J M Carazo,et al.  Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. , 1997, Journal of molecular biology.

[9]  Edward H. Egelman,et al.  The RecA hexamer is a structural homologue of ring helicases , 1997, Nature Structural Biology.

[10]  T. Lohman,et al.  Kinetic Measurement of the Step Size of DNA Unwinding by Escherichia coli UvrD Helicase , 1997, Science.

[11]  L. Bird,et al.  Crystal structure of a DExx box DNA helicase , 1996, Nature.

[12]  F. Studier,et al.  Biochemical Analysis of Mutant T7 Primase/Helicase Proteins Defective in DNA Binding, Nucleotide Hydrolysis, and the Coupling of Hydrolysis with DNA Unwinding* , 1996, The Journal of Biological Chemistry.

[13]  K. Burtis,et al.  Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes , 1996, Molecular and cellular biology.

[14]  E. Egelman Homomorphous hexameric helicases: tales from the ring cycle. , 1996, Structure.

[15]  Edward H. Egelman,et al.  The hexameric E. coli DnaB helicase can exist in different Quaternary states. , 1996, Journal of molecular biology.

[16]  E. Koonin,et al.  Two domains of superfamily I helicases may exist as separate proteins , 1996, Protein science : a publication of the Protein Society.

[17]  K. Bjornson,et al.  Mechanisms of helicase-catalyzed DNA unwinding. , 1996, Annual review of biochemistry.

[18]  K. Shigesada,et al.  Structural and functional dissections of transcription termination factor rho by random mutagenesis. , 1995, Journal of molecular biology.

[19]  J A Eisen,et al.  Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. , 1995, Nucleic acids research.

[20]  J M Carazo,et al.  A structural model for the Escherichia coli DnaB helicase based on electron microscopy data. , 1995, Journal of structural biology.

[21]  E. Egelman,et al.  Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. V. von Hippel,et al.  The Phage T4-coded DNA Replication Helicase (gp41) Forms a Hexamer upon Activation by Nucleoside Triphosphate (*) , 1995, The Journal of Biological Chemistry.

[23]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[24]  S. West,et al.  The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Richardson,et al.  Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli rho gene , 1994, Journal of bacteriology.

[26]  S. Bolland,et al.  Genetic organization of the conjugal DNA processing region of the IncW plasmid R388. , 1994, Journal of molecular biology.

[27]  S. W. Matson,et al.  DNA helicases: Enzymes with essential roles in all aspects of DNA metabolism , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  W. Bujalowski,et al.  Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs. , 1993, Biochemistry.

[29]  Eugene V. Koonin,et al.  Helicases: amino acid sequence comparisons and structure-function relationships , 1993 .

[30]  P. Forterre,et al.  Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Lohman,et al.  Allosteric Effects of Nucleotide Cofactors on Escherichia coli Rep Helicase&DNA Binding , 1992, Science.

[32]  P Linder,et al.  D‐E‐A‐D protein family of putative RNA helicases , 1992, Molecular microbiology.

[33]  T. Steitz,et al.  Structure of the recA protein–ADP complex , 1992, Nature.

[34]  Irene T. Weber,et al.  The structure of the E. coli recA protein monomer and polymer , 1992, Nature.

[35]  P. V. von Hippel,et al.  Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. , 1992, Biochemistry.

[36]  B. Blencowe,et al.  Bacterial DNA replication initiation factor priA is related to proteins belonging to the 'DEAD-box' family. , 1991, Nucleic acids research.

[37]  A. Zlotnick,et al.  RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA. , 1990, Journal of molecular biology.

[38]  J. Heuser,et al.  Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy. , 1989, Journal of molecular biology.

[39]  P. Hough,et al.  ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication , 1989, Nature.

[40]  S. Weller,et al.  UL5, a protein required for HSV DNA synthesis: genetic analysis, overexpression in Escherichia coli, and generation of polyclonal antibodies. , 1988, Virology.

[41]  E. Egelman,et al.  Structure of helical RecA-DNA complexes. III. The structural polarity of RecA filaments and functional polarity in the RecA-mediated strand exchange reaction. , 1988, Journal of molecular biology.

[42]  I. Lehman,et al.  A DNA helicase induced by herpes simplex virus type 1. , 1988, Nucleic acids research.

[43]  F. Dean,et al.  The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. , 1988, The Journal of biological chemistry.

[44]  H. Stahl,et al.  Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements. , 1988, The Journal of biological chemistry.

[45]  R. Seif New Properties of Simian Virus 40 Large T Antigen , 1982, Molecular and cellular biology.

[46]  M. Gefter,et al.  Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. , 1979, Proceedings of the National Academy of Sciences of the United States of America.