Scalable Variational Gaussian Process Classification

Gaussian process classification is a popular method with a number of appealing properties. We show how to scale the model within a variational inducing point framework, outperforming the state of the art on benchmark datasets. Importantly, the variational formulation can be exploited to allow classification in problems with millions of data points, as we demonstrate in experiments.

[1]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[2]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[3]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[4]  Matthias W. Seeger,et al.  Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations , 2003 .

[5]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[6]  Carl E. Rasmussen,et al.  Assessing Approximate Inference for Binary Gaussian Process Classification , 2005, J. Mach. Learn. Res..

[7]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[8]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[9]  Mark Girolami,et al.  Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors , 2006, Neural Computation.

[10]  Sean B. Holden,et al.  The Generalized FITC Approximation , 2007, NIPS.

[11]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[12]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Manfred Opper,et al.  The Variational Gaussian Approximation Revisited , 2009, Neural Computation.

[15]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[16]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[17]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[18]  Mohammad Emtiyaz Khan,et al.  Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression , 2012, NIPS.

[19]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[20]  Kian Ming Adam Chai,et al.  Variational Multinomial Logit Gaussian Process , 2012, J. Mach. Learn. Res..

[21]  Andrew Gordon Wilson,et al.  Gaussian Process Regression Networks , 2011, ICML.

[22]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[23]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[24]  Carl E. Rasmussen,et al.  Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.

[25]  Neil D. Lawrence,et al.  Gaussian Process Models with Parallelization and GPU acceleration , 2014, ArXiv.

[26]  Neil D. Lawrence,et al.  Tilted Variational Bayes , 2014, AISTATS.

[27]  Edwin V. Bonilla,et al.  Automated Variational Inference for Gaussian Process Models , 2014, NIPS.