Toward Quantum Hall Effect in a Josephson Junction

Hybrid superconductor/semiconductor devices constitute a powerful platform where intriguing topological properties can be investigated. Here we present fabrication methods and analysis of Josephson junctions formed by a high-mobility InAs quantum-well bridging two Nb superconducting contacts. We demonstrate supercurrent flow with transport measurements, critical temperature of 8.1 K, and critical fields of the order of 3 T. Modulation of supercurrent amplitude can be achieved by acting on two side gates lithographed close to the two-dimensional electron gas. Low-temperature measurements reveal also well-developed quantum Hall plateaus, showing clean quantization of Hall conductance. Here the side gates can be used to manipulate channel width and electron carrier density in the device. These findings demonstrate the potential of these hybrid devices to investigate the coexistence of superconductivity and Quantum Hall effect and constitute the first step in the development of new device architectures hosting topological states of matter.

[1]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[2]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[3]  Takashi Taniguchi,et al.  Inducing superconducting correlation in quantum Hall edge states , 2016, Nature Physics.

[4]  Hideaki Takayanagi,et al.  A Josephson field effect transistor using an InAs‐inserted‐channel In0.52Al0.48As/In0.53Ga0.47As inverted modulation‐doped structure , 1996 .

[5]  I. V. Borzenets,et al.  Supercurrent in the quantum Hall regime , 2015, Science.

[6]  F. Romanato,et al.  Strain induced effects on the transport properties of metamorphic InAlAs/InGaAs quantum wells , 2005 .

[7]  F. Giazotto,et al.  A ballistic two-dimensional-electron-gas Andreev interferometer , 2014 .

[8]  G. Biasiol,et al.  Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions , 2013, 1302.0737.

[9]  Jason Alicea,et al.  Exotic non-Abelian anyons from conventional fractional quantum Hall states , 2012, Nature Communications.

[10]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[11]  Nadya Mason Superconductivity on the edge , 2016, Science.

[12]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[13]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[14]  A. Cavallini,et al.  Two-dimensional electron gas formation in undoped In0.75Ga0.25As/In0.75Al0.25As quantum wells , 2004 .

[15]  H. Alloul Introduction to Superconductivity , 2011 .

[16]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[17]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[18]  T. D. Clark,et al.  Feasibility of hybrid Josephson field effect transistors , 1980 .

[19]  Ying Wang,et al.  Formation of helical domain walls in the fractional quantum Hall regime as a step toward realization of high-order non-Abelian excitations , 2018, Physical Review B.

[20]  C. Kane,et al.  Observation of neutral modes in the fractional quantum Hall regime , 2010, Nature.

[21]  K. West,et al.  Parafermion supporting platform based on spin transitions in the fractional quantum Hall effect regime , 2017, 1709.07928.

[22]  C. W. J. Beenakker,et al.  Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction , 2011, 1103.0887.

[23]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[24]  F. Capotondi,et al.  Scattering mechanisms in undoped In0.75Ga0.25As/In0.75Al0.25As two-dimensional electron gases , 2005 .

[25]  T. Schäpers Superconductor/Semiconductor Junctions , 2001 .

[26]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[27]  Michael Stone,et al.  Josephson currents in quantum Hall devices , 2011, 1102.5265.

[28]  F. Haldane,et al.  Nobel lecture: Topological quantum matter , 2017 .

[29]  David J. Clarke,et al.  Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems , 2013, Nature Physics.

[30]  Jason Alicea,et al.  Topological Phases with Parafermions: Theory and Blueprints , 2015, 1504.02476.

[31]  A. V. Kretinin,et al.  Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene , 2015, 1504.03286.

[32]  Matsuyama,et al.  Critical currents and supercurrent oscillations in Josephson field-effect transistors. , 1994, Physical review. B, Condensed matter.

[33]  Hansen,et al.  Subharmonic energy-gap structure in superconducting weak links. , 1988, Physical review. B, Condensed matter.

[34]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[37]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[38]  W. Marsden I and J , 2012 .

[39]  R Aguado,et al.  Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions , 2016, Nature Communications.

[40]  G. Biasiol,et al.  A ballistic quantum ring Josephson interferometer , 2012, Nanotechnology.

[41]  V. S. Shumeiko,et al.  Resonant subgap current transport in Josephson field effect transistor , 2016 .

[42]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[43]  Aleksandr Kazakov,et al.  Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures , 2015, Nature Communications.