Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms

In this study, a new mutation operator has been developed to increase Genetic Algorithm (GA) performance to find the shortest distance in the known Traveling Salesman Problem (TSP). We called this method as Greedy Sub Tour Mutation (GSTM). There exist two different greedy search methods and a component that provides a distortion in this new operator. The developed GSTM operator was tested with simple GA mutation operators in 14 different TSP examples selected from TSPLIB. The application of this GSTM operator gives much more effective results regarding to the best and average error values. The GSTM operator used with simple GAs decreases the best error values according to the other mutation operators with the ratio of between 74.24% and 88.32% and average error values between 59.42% and 79.51%.

[1]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[2]  M. Gorges-Schleuter Asparagos96 and the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[3]  T. Stützle,et al.  MAX-MIN Ant System and local search for the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[4]  Pedro F. Miret,et al.  Wikipedia , 2008, Monatsschrift für Deutsches Recht.

[5]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[6]  D. Fogel Applying evolutionary programming to selected traveling salesman problems , 1993 .

[7]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[8]  G. Andal Jayalakshmi,et al.  A Hybrid Genetic Algorithm - A New Approach to Solve Traveling Salesman Problem , 2001, Int. J. Comput. Eng. Sci..

[9]  W. Banzhaf,et al.  The “molecular” traveling salesman , 1990, Biological Cybernetics.

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[11]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[12]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[13]  David E. Goldberg,et al.  AllelesLociand the Traveling Salesman Problem , 1985, ICGA.

[14]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[15]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[16]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[17]  Byung-Ro Moon,et al.  Voronoi quantized crossover for traveling salesman problem , 2002 .

[18]  James Kennedy,et al.  Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [Book Review] , 1999, IEEE Transactions on Evolutionary Computation.

[19]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[20]  D. Fogel An evolutionary approach to the traveling salesman problem , 1988, Biological Cybernetics.

[21]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[22]  Sushil J. Louis,et al.  Interactive genetic algorithms for the traveling salesman problem , 1999 .

[23]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[24]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[25]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .