Minimum Clique Partition in Unit Disk Graphs

The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time $${n^{O(1/\varepsilon^2)}}$$. This improves on a previous PTAS with $${n^{O(1/\varepsilon^4)}}$$ running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).

[1]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[2]  W. Marsden I and J , 2012 .

[3]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[4]  Luérbio Faria,et al.  On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation , 2004, Electron. Notes Discret. Math..

[5]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[6]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[7]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[8]  János Pach,et al.  Combinatorial Geometry , 2012 .

[9]  J. Moon,et al.  Some packing and covering theorems , 1967 .

[10]  Milan Ruzic,et al.  Uniform deterministic dictionaries , 2008, TALG.

[11]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[12]  Magnús M. Hallórsson A still better performance guarantee for approximate graph coloring , 1993 .

[13]  Imran A. Pirwani,et al.  A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2010, SWAT.

[14]  Sergiy Butenko,et al.  Optimization Problems in Unit-Disk Graphs , 2009, Encyclopedia of Optimization.

[15]  Gerhard J. Woeginger,et al.  Geometric Clusterings , 1991, J. Algorithms.

[16]  P. Lockhart,et al.  Introduction to Geometry , 1940, The Mathematical Gazette.

[17]  L. Mordell Review: J. W. S. Cassels, An introduction to the geometry of numbers , 1961 .

[18]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[19]  Johann Hurink,et al.  Approximation schemes for wireless networks , 2008, TALG.

[20]  Erik Jan van Leeuwen,et al.  Approximating geometric coverage problems , 2008, SODA '08.

[21]  Xiaojun Shen,et al.  Covering convex sets with non-overlapping polygons , 1990, Discret. Math..

[22]  Imran A. Pirwani,et al.  A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, Algorithmica.

[23]  Thomas Erlebach,et al.  Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.

[24]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[25]  Magnús M. Halldórsson,et al.  A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Information Processing Letters.

[26]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[27]  Klaus Jansen,et al.  Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.

[28]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[29]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[30]  Imran A. Pirwani,et al.  A PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, ArXiv.

[31]  Kenneth Jay Supowit,et al.  Topics in Computational Geometry , 1981 .

[32]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[33]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[34]  Michael Mitzenmacher,et al.  Probability And Computing , 2005 .