Minimum Clique Partition in Unit Disk Graphs
暂无分享,去创建一个
[1] J. Pach,et al. Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.
[2] W. Marsden. I and J , 2012 .
[3] David G. Kirkpatrick,et al. Algorithmic aspects of constrained unit disk graphs , 1996 .
[4] Luérbio Faria,et al. On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation , 2004, Electron. Notes Discret. Math..
[5] David G. Kirkpatrick,et al. Unit disk graph recognition is NP-hard , 1998, Comput. Geom..
[6] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..
[7] D. R. Heath-Brown,et al. An Introduction to the Theory of Numbers, Sixth Edition , 2008 .
[8] János Pach,et al. Combinatorial Geometry , 2012 .
[9] J. Moon,et al. Some packing and covering theorems , 1967 .
[10] Milan Ruzic,et al. Uniform deterministic dictionaries , 2008, TALG.
[11] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[12] Magnús M. Hallórsson. A still better performance guarantee for approximate graph coloring , 1993 .
[13] Imran A. Pirwani,et al. A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2010, SWAT.
[14] Sergiy Butenko,et al. Optimization Problems in Unit-Disk Graphs , 2009, Encyclopedia of Optimization.
[15] Gerhard J. Woeginger,et al. Geometric Clusterings , 1991, J. Algorithms.
[16] P. Lockhart,et al. Introduction to Geometry , 1940, The Mathematical Gazette.
[17] L. Mordell. Review: J. W. S. Cassels, An introduction to the geometry of numbers , 1961 .
[18] David Zuckerman,et al. Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .
[19] Johann Hurink,et al. Approximation schemes for wireless networks , 2008, TALG.
[20] Erik Jan van Leeuwen,et al. Approximating geometric coverage problems , 2008, SODA '08.
[21] Xiaojun Shen,et al. Covering convex sets with non-overlapping polygons , 1990, Discret. Math..
[22] Imran A. Pirwani,et al. A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, Algorithmica.
[23] Thomas Erlebach,et al. Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.
[24] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[25] Magnús M. Halldórsson,et al. A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Information Processing Letters.
[26] Charles J. Colbourn,et al. Unit disk graphs , 1991, Discret. Math..
[27] Klaus Jansen,et al. Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.
[28] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[29] Harry B. Hunt,et al. Simple heuristics for unit disk graphs , 1995, Networks.
[30] Imran A. Pirwani,et al. A PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, ArXiv.
[31] Kenneth Jay Supowit,et al. Topics in Computational Geometry , 1981 .
[32] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[33] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[34] Michael Mitzenmacher,et al. Probability And Computing , 2005 .