Scalability of multiobjective genetic local search to many-objective problems: Knapsack problem case studies

It is well-known that Pareto dominance-based evolutionary multiobjective optimization (EMO) algorithms do not work well on many-objective problems. This is because almost all solutions in each population become non-dominated with each other when the number of objectives is large. That is, the convergence property of EMO algorithms toward the Pareto front is severely deteriorated by the increase in the number of objectives. Currently the design of scalable EMO algorithms is a hot issue in the EMO community. In this paper, we examine the scalability of multiobjective genetic local search (MOGLS) to many-objective problems using a hybrid algorithm of NSGA-lI and local search. Multiobjective knapsack problems with 2, 4, 6, 8, and 10 objectives are used in computational experiments. It is shown by experimental results that the performance of NSGA-lI is improved by the hybridization with local search independent of the number of objectives in the range of 2 to 10 objectives.

[1]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[2]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  Hisao Ishibuchi,et al.  Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization , 2007, EMO.

[4]  Hisao Ishibuchi,et al.  Comparison between Single-Objective and Multi-Objective Genetic Algorithms: Performance Comparison and Performance Measures , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[5]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[6]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[8]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[11]  Hisao Ishibuchi,et al.  Performance evaluation of simple multiobjective genetic local search algorithms on multiobjective 0/1 knapsack problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[12]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[13]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[14]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[15]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[16]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[17]  Rolf Drechsler,et al.  Robust Multi-Objective Optimization in High Dimensional Spaces , 2007, EMO.

[18]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[19]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[20]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[21]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[22]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[23]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[24]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[25]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[26]  Jouni Lampinen,et al.  Ranking-Dominance and Many-Objective Optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[28]  Hisao Ishibuchi,et al.  Comparison Between Lamarckian and Baldwinian Repair on Multiobjective 0/1 Knapsack Problems , 2005, EMO.

[29]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[30]  Hisao Ishibuchi,et al.  Iterative approach to indicator-based multiobjective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[31]  Hisao Ishibuchi,et al.  Some Issues on the Implementation of Local Search in Evolutionary Multiobjective Optimization , 2004, GECCO.

[32]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[33]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.