C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease

[1]  T. Dudnakova,et al.  Methods Molecular Biology , 2016 .

[2]  P. McColgan,et al.  C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[3]  R. Yu,et al.  Ultrasensitive label-free amplified colorimetric detection of p53 based on G-quadruplex MBzymes. , 2013, Biosensors & bioelectronics.

[4]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[5]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[6]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[7]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[8]  B. Miller,et al.  Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons , 2013, Acta Neuropathologica.

[9]  J. Gilbert,et al.  Repeat expansions in the C9ORF72 gene contribute to Alzheimer's disease in Caucasians , 2013, Neurobiology of Aging.

[10]  Chadwick M. Hales,et al.  Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration , 2013, Proceedings of the National Academy of Sciences.

[11]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[12]  S. Balasubramanian,et al.  Quantitative visualization of DNA G-quadruplex structures in human cells. , 2013, Nature chemistry.

[13]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[14]  C. E. Pearson,et al.  The Disease-associated r(GGGGCC)n Repeat from the C9orf72 Gene Forms Tract Length-dependent Uni- and Multimolecular RNA G-quadruplex Structures* , 2013, The Journal of Biological Chemistry.

[15]  G. Parkinson,et al.  C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes , 2012, Scientific Reports.

[16]  R. Petersen,et al.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype , 2012, Neurobiology of Aging.

[17]  D. Neary,et al.  Analysis of the hexanucleotide repeat in C9ORF72 in Alzheimer's disease , 2012, Neurobiology of Aging.

[18]  I. Mackenzie,et al.  Advances in understanding the molecular basis of frontotemporal dementia , 2012, Nature Reviews Neurology.

[19]  H. Tsoi,et al.  CAG expansion induces nucleolar stress in polyglutamine diseases , 2012, Proceedings of the National Academy of Sciences.

[20]  M. Gorospe,et al.  RNA-binding protein nucleolin in disease , 2012, RNA biology.

[21]  M. Hetman,et al.  Emerging roles of the neuronal nucleolus , 2012, Trends in Neurosciences.

[22]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[23]  C. van Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum , 2012, Annals of medicine.

[24]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[25]  C. Koh,et al.  Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation , 2011, Oncogene.

[26]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[27]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[28]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[29]  O. Hardiman,et al.  Amyotrophic lateral sclerosis , 2011, The Lancet.

[30]  T. Haystead,et al.  Efficient detection of RNA–protein interactions using tethered RNAs , 2011, Nucleic acids research.

[31]  H. Pan,et al.  Long Tract of Untranslated CAG Repeats Is Deleterious in Transgenic Mice , 2011, PloS one.

[32]  C. E. Pearson,et al.  Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats , 2010, Nucleic acids research.

[33]  F. Boisvert,et al.  The Nucleolus under Stress , 2010, Molecular Cell.

[34]  J. Taylor,et al.  Repeat expansion disease: progress and puzzles in disease pathogenesis , 2010, Nature Reviews Genetics.

[35]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[36]  B. Dujon,et al.  Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes , 2008, Microbiology and Molecular Biology Reviews.

[37]  Julian Leon Huppert,et al.  Four-Stranded Nucleic Acids: Structure, Function and Targeting of G-Quadruplexes , 2008 .

[38]  L. Hellman,et al.  Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions , 2007, Nature Protocols.

[39]  S. Mirkin Expandable DNA repeats and human disease , 2007, Nature.

[40]  Shankar Balasubramanian,et al.  An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. , 2007, Nature chemical biology.

[41]  E. Izaurralde,et al.  P bodies: at the crossroads of post-transcriptional pathways , 2007, Nature Reviews Molecular Cell Biology.

[42]  Stephen Neidle,et al.  Loop-length-dependent folding of G-quadruplexes. , 2004, Journal of the American Chemical Society.

[43]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[44]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[45]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[46]  G. Dreyfuss,et al.  The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization. , 1994, Nucleic acids research.

[47]  E. D. Hyman A new method of sequencing DNA. , 1988, Analytical biochemistry.

[48]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .