Composite load model decomposition : induction motor contribution

In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.

[1]  Gerard Ledwich,et al.  Induction Motor Parameter Identification from Operational Data , 2007 .

[2]  Salvatore Nuccio,et al.  A comparison of spectrum estimation techniques for nonstationary signals in induction motor drive measurements , 2005, IEEE Transactions on Instrumentation and Measurement.

[3]  David J. Hill,et al.  Nonlinear dynamic load models with recovery for voltage stability studies , 1993 .

[4]  Jorge Guillermo Calderon-Guizar Load representation impact on the damping of electromechanical oscillations in electrical power systems , 2007 .

[5]  David J. Hill,et al.  Stability analysis of induction motor networks , 1998 .

[6]  L. Sainz,et al.  Study of aggregate models for squirrel-cage induction motors , 2005, IEEE Transactions on Power Systems.

[7]  A.M. Stankovic,et al.  Modeling and simulation of the induction motor with position-dependent load torque , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  Ian A. Hiskens,et al.  Locating dynamic loads which significantly influence damping , 1997 .

[9]  C. W. Taylor,et al.  Load representation for dynamic performance analysis , 1993 .

[10]  Lennart Ljung,et al.  An alternative motivation for the indirect approach to closed-loop identification , 1999, IEEE Trans. Autom. Control..

[11]  A. Keyhani,et al.  Identification of Variable Frequency Induction Motor Models from Operating Data , 2002, IEEE Power Engineering Review.

[12]  M. David Kankam,et al.  Aggregation of Induction Motors for Transient Stability Load Modeling , 1987, IEEE Transactions on Power Systems.

[13]  N. Ahmed,et al.  A unified approach to nonparametric spectrum estimation algorithms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[14]  Y. Robichaud,et al.  Load Response Coefficients Monitoring System : Theory and Field Experience , 1981, IEEE Transactions on Power Apparatus and Systems.

[15]  Bharat Bhargava,et al.  Monitoring power system dynamics using phasor measurement technology for power system dynamic security assessment , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[16]  B. Khodabakhchian,et al.  Modeling a mixed residential-commercial load for simulations involving large disturbances , 1997 .

[17]  D. Kosterev,et al.  Load Modeling in WECC , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[18]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[19]  Yunping Chen,et al.  The load modeling and parameters identification for voltage stability analysis , 2002, Proceedings. International Conference on Power System Technology.

[20]  A. De Carli,et al.  Parameter identification for induction motor simulation , 1976, Autom..

[21]  R.E. Araujo,et al.  Estimation of physical parameters of an induction motor using an indirect method , 2002, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on.

[22]  Hsiao-Dong Chiang,et al.  Representative static load models for transient stability analysis: development and examination , 2007 .

[23]  Rahmat A. Shoureshi,et al.  Neural networks for system identification , 1990 .

[24]  L. Ljung,et al.  Variance results for closed-loop identification methods , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[25]  S.J. Macdonald,et al.  Dynamic Voltage Stability of Auckland Metropolitan Load Area , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[26]  Byoung-Kon Choi,et al.  Development of composite load models of power systems using on-line measurement data , 2006, 2006 IEEE Power Engineering Society General Meeting.

[27]  Colin Grantham,et al.  Investigation of parameter characteristics for induction machine analysis and control , 2004 .

[28]  Chao-Shun Chen,et al.  The application of load models of electric appliances to distribution system analysis , 1995 .

[29]  Haozhong Cheng,et al.  The third-order induction motor parameter estimation using an adaptive genetic algorithm , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[30]  G. J. Rogers,et al.  A fundamental study of inter-area oscillations in power systems , 1991 .

[31]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[32]  Djamel Chikouche,et al.  Effect of the window length on the EMG spectral estimation through the Blackman-Tukey method , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[33]  Momen Bahadornejad On-line local load measurement based voltage instability prediction , 2005 .

[34]  Torbjörn Thiringer Modelling of the induction machine for supply voltage disturbances , 1994 .

[35]  Wen-Shiow Kao The effect of load models on unstable low-frequency oscillation damping in Taipower system experience w/wo power system stabilizers , 2001 .

[36]  G. Ledwich,et al.  On-line load characterization by sequential peeling , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[37]  Jong-Wook Kim,et al.  Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS) , 2005, IEEE Transactions on Energy Conversion.

[38]  Rasmus K. Ursem,et al.  Parameter identification of induction motors using stochastic optimization algorithms , 2004, Appl. Soft Comput..

[39]  Carson W. Taylor,et al.  Definition and Classification of Power System Stability , 2004 .

[40]  Francesco Alonge,et al.  Least squares and genetic algorithms for parameter identification of induction motors , 2001 .

[41]  N. Rotondale,et al.  On-line identification of electrical parameters of the induction motor using RLS estimation , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).

[42]  Jiří Jan,et al.  Digital signal filtering, analysis and restoration , 2000 .

[43]  A. Blomqvist Figures of merit of windows for power density spectrum estimation with the DFT , 1979, Proceedings of the IEEE.

[44]  Hsiao-Dong Chiang,et al.  Dynamic load models in power systems using the measurement approach , 1993 .

[45]  Horst Grotstollen,et al.  Off-line identification of the electrical parameters of an industrial servo drive system , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[46]  Hsiao-Dong Chiang,et al.  Development of a frequency-dependent composite load model using the measurement approach , 1994 .

[47]  L. Sainz,et al.  Analysis of the Induction Machine Parameter Identification , 2002, IEEE Power Engineering Review.

[48]  F. Lange,et al.  A New Aggregation Method for Determining Composite Load Characteristics , 1982, IEEE Transactions on Power Apparatus and Systems.

[49]  H.M.Z. El-Din,et al.  Dynamic load modeling in large scale stability studies , 1988 .

[50]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[51]  Daniel J. Trudnowski,et al.  Initial results in electromechanical mode identification from ambient data , 1997 .

[52]  D. Retzmann,et al.  Static and dynamic approaches for analyzing voltage stability , 2006 .

[53]  J. S. Edmonds,et al.  Derivation of Induction Motor Models from Standstill Frequency Response Tests , 1989, IEEE Power Engineering Review.

[54]  H. Garnier,et al.  Time-domain approaches to continuous-time model identification of dynamical systems from sampled data , 2004, Proceedings of the 2004 American Control Conference.

[55]  Ping Ju,et al.  Nonlinear dynamic load modelling: model and parameter estimation , 1996 .

[56]  Lennart Ljung,et al.  A projection method for closed-loop identification , 2000, IEEE Trans. Autom. Control..

[57]  J.W. Feltes,et al.  Simulating fast and slow dynamic effects in power systems , 1992, IEEE Computer Applications in Power.

[58]  Tien C. Hsia,et al.  System identification: Least-squares methods , 1977 .

[59]  J. P. Norton,et al.  An Introduction to Identification , 1986 .

[60]  A.G. Phadke,et al.  Synchronized phasor measurements in power systems , 1993, IEEE Computer Applications in Power.

[61]  P. Kundur,et al.  Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions , 2004, IEEE Transactions on Power Systems.

[62]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[63]  Leon M. Tolbert,et al.  A nonlinear least-squares approach for identification of the induction motor parameters , 2005, IEEE Transactions on Automatic Control.

[64]  P. Vadstrup,et al.  Parameter identification of induction motors using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[65]  Jovica V. Milanovic,et al.  The influence of voltage variations on estimated load parameters , 2001 .

[66]  İlyas Eker Open-loop and closed-loop experimental on-line identification of a three-mass electromechanical system , 2004 .

[67]  L. A. Zadeh,et al.  From Circuit Theory to System Theory , 1962, Proceedings of the IRE.

[68]  D. C. Lee,et al.  Dynamic Load Models Derived from Date Acquired During System Transients , 1982, IEEE Transactions on Power Apparatus and Systems.

[69]  Christiaan Moons,et al.  Parameter identification of induction motor drives , 1995, Autom..

[70]  Jennifer Stephan,et al.  Real-time estimation of the parameters and fluxes of induction motors , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[71]  Y. Robichaud,et al.  Closed Loop Load Response to Random Perturbations , 1979, IEEE Transactions on Power Apparatus and Systems.

[72]  P. Kundur,et al.  Power system stability and control , 1994 .

[73]  Scott D. Sudhoff,et al.  Analysis of Electric Machinery and Drive Systems , 1995 .

[74]  T. Kataoka,et al.  Application of an extended Kalman filter to parameter identification of an induction motor , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[75]  A.M.N. Lima,et al.  Real-time estimation of the electrical parameters of an induction machine using sinusoidal PWM voltage waveforms , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[76]  Jovica V. Milanovic,et al.  Load modelling in studies of power system damping , 1995 .

[77]  Guoping Liu,et al.  Analysis of inter-area oscillations in the South China Interconnected Power System , 2004 .