Independent component analysis of functional MRI: what is signal and what is noise?

[1]  Jeffrey Bisker,et al.  Principles and Practice of Positron Emission Tomography. , 2003 .

[2]  Baxter P Rogers,et al.  Power spectrum ranked independent component analysis of a periodic fMRI complex motor paradigm , 2003, Human brain mapping.

[3]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[4]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[5]  Rainer Goebel,et al.  Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components , 2002, Neurocomputing.

[6]  Ole Winther,et al.  Analysis of functional neuroimages using ICA with adaptive binary sources , 2002, Neurocomputing.

[7]  Lars Kai Hansen,et al.  A spatially robust ICA algorithm for multiple fMRI data sets , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[8]  Martin J. McKeown,et al.  Movement correction of fMRI time-series using intrinsic statistical properties of images: an independent component analysis approach , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[9]  Richard A. Harshman,et al.  Noise Reduction in BOLD-Based fMRI Using Component Analysis , 2002, NeuroImage.

[10]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[11]  J. Pekar,et al.  Erratum: Different activation dynamics in multiple neural systems during simulated driving (Human Brain Mapping (2002) 16 (158-167)) , 2002 .

[12]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[13]  Martin J. McKeown,et al.  Deterministic and stochastic features of fMRI data: implications for analysis of event-related experiments , 2002, Journal of Neuroscience Methods.

[14]  Richard L. Wahl,et al.  Principles and Practice of Positron Emission Tomography , 2002 .

[15]  Mukesh Dhamala,et al.  Hyperscanning : Simultaneous fMRI during Linked Social Interactions , 2001 .

[16]  Rainer Goebel,et al.  Spatial independent component analysis of functional MRI time‐series: To what extent do results depend on the algorithm used? , 2002, Human brain mapping.

[17]  Markus Svensén,et al.  ICA of fMRI Group Study Data , 2002, NeuroImage.

[18]  J. Pekar,et al.  Different activation dynamics in multiple neural systems during simulated driving , 2002, Human brain mapping.

[19]  Hans Knutsson,et al.  Exploratory fMRI Analysis by Autocorrelation Maximization , 2002, NeuroImage.

[20]  V. Haughton,et al.  Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. , 2002, AJNR. American journal of neuroradiology.

[21]  Dietmar Cordes,et al.  Hierarchical clustering to measure connectivity in fMRI resting-state data. , 2002, Magnetic resonance imaging.

[22]  T. Sejnowski,et al.  Single-Trial Variability in Event-Related BOLD Signals , 2002, NeuroImage.

[23]  Hangyi Jiang,et al.  Origin and minimization of residual motion‐related artifacts in navigator‐corrected segmented diffusion‐weighted EPI of the human brain , 2002, Magnetic resonance in medicine.

[24]  S. Langenecker,et al.  Differences in the functional neuroanatomy of inhibitory control across the adult life span. , 2002, Psychology and aging.

[25]  V. Haughton,et al.  Test-retest precision of functional magnetic resonance imaging processed with independent component analysis , 2002, Neuroradiology.

[26]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[27]  James V. Stone Independent component analysis: an introduction , 2002, Trends in Cognitive Sciences.

[28]  Tohru Kiryu,et al.  Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure , 2002, Human brain mapping.

[29]  Yihong Yang,et al.  Mapping Transient, Randomly Occurring Neuropsychological Events Using Independent Component Analysis , 2001, NeuroImage.

[30]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[31]  J. Pekar,et al.  fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis , 2001, NeuroImage.

[32]  Emery N. Brown,et al.  Locally Regularized Spatiotemporal Modeling and Model Comparison for Functional MRI , 2001, NeuroImage.

[33]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[34]  Yasuyo Kita,et al.  An Attempt for Coloring Multichannel MR Imaging Data , 2001, IEEE Trans. Vis. Comput. Graph..

[35]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[36]  Rainer Goebel,et al.  Activity patterns in human motion sensitive areas depend on the interpretation of global motion , 2001, NeuroImage.

[37]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[38]  T. Sejnowski,et al.  Independent component analysis at the neural cocktail party , 2001, Trends in Neurosciences.

[39]  N V Hartvig,et al.  Spatial mixture modeling of fMRI data , 2000, Human brain mapping.

[40]  M E Meyerand,et al.  Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. , 2000, Magnetic resonance imaging.

[41]  Terrence J. Sejnowski,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  R. Baumgartner,et al.  Correlator Beware: Correlation Has Limited Selectivity for fMRI Data Analysis , 2000, NeuroImage.

[43]  F Makedon,et al.  Statistical Methods in Medical Research Data Mining in Brain Imaging , 2022 .

[44]  M. McKeown Detection of Consistently Task-Related Activations in fMRI Data with Hybrid Independent Component Analysis , 2000, NeuroImage.

[45]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[46]  L. K. Hansen,et al.  Plurality and Resemblance in fMRI Data Analysis , 1999, NeuroImage.

[47]  R Baumgartner,et al.  A hierarchical clustering method for analyzing functional MR images. , 1999, Magnetic resonance imaging.

[48]  L. K. Hansen,et al.  Generalizable Patterns in Neuroimaging: How Many Principal Components? , 1999, NeuroImage.

[49]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[50]  Michael Erb,et al.  Dynamical Cluster Analysis of Cortical fMRI Activation , 1999, NeuroImage.

[51]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[52]  B. Biswal,et al.  Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. , 1999, Journal of computer assisted tomography.

[53]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[54]  Karl J. Friston Modes or models: a critique on independent component analysis for fMRI , 1998, Trends in Cognitive Sciences.

[55]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[56]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[57]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[58]  S Makeig,et al.  Spatially independent activity patterns in functional MRI data during the stroop color-naming task. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R Baumgartner,et al.  Fuzzy clustering of gradient‐echo functional MRI in the human visual cortex. Part II: Quantification , 1997, Journal of magnetic resonance imaging : JMRI.

[60]  H. Attias,et al.  Blind source separation and deconvolution by dynamic component analysis , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[61]  P. Mitra,et al.  The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging , 1997, Magnetic resonance in medicine.

[62]  Leslie G. Ungerleider,et al.  Changes in limbic and prefrontal functional interactions in a working memory task for faces. , 1996, Cerebral cortex.

[63]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[64]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[65]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[66]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[67]  Wei Lu,et al.  Eliminating indeterminacy in ICA , 2003, Neurocomputing.

[68]  Vince D. Calhoun,et al.  ICA of functional MRI data: an overview. , 2003 .

[69]  Dietmar Cordes,et al.  Comparison of independent component analysis and conventional hypothesis-driven analysis for clinical functional MR image processing. , 2002, AJNR. American journal of neuroradiology.

[70]  Jia-Hong Gao,et al.  Improved detection of time windows of brain responses in fMRI using modified temporal clustering analysis. , 2002, Magnetic resonance imaging.

[71]  Lars Kai Hansen,et al.  Blind Separation of Noisy Image Mixtures , 2000 .

[72]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[73]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[74]  R. Buckner,et al.  Human Brain Mapping 6:373–377(1998) � Event-Related fMRI and the Hemodynamic Response , 2022 .

[75]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[76]  R. H. Myers Classical and modern regression with applications , 1986 .