Decryption of a random-phase multiplexing recording system

Abstract In practice, decrypting a random-phase encrypted volume holographic data storage system is impossible unless the original random-phase plate for the encryption is available. However, this study demonstrates that under certain conditions, ways are available that can decrypt an encrypted photorefractive LiNbO 3 crystal holographic storage system. In addition to presenting experimental results that show the efficacy of this decryption approach, problems and difficulties in the experiments are discussed.

[1]  Brian H. Marcus,et al.  Holographic data storage technology , 2000, IBM J. Res. Dev..

[2]  R J Marks Ii,et al.  Holographic representations of space-variant systems using phase-coded reference beams. , 1977, Applied optics.

[3]  Chi-Ching Chang,et al.  Hybrid Holographic Multiplexing for Data Storage and Application to Optical Encryption : Optics and Quantum Electronics , 2002 .

[4]  C Gu,et al.  Optical restoration of photorefractive holograms through self-enhanced diffraction. , 1995, Optics letters.

[5]  J. Feinberg,et al.  Self-pumped, continuous-wave phase conjugator using internal reflection. , 1982, Optics letters.

[6]  Ching-Cherng Sun,et al.  Random phase-coded multiplexing of hologram volumes using ground glass , 1996 .

[7]  Chi-Ching Chang,et al.  Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal , 2001 .

[8]  Theo T. Tschudi,et al.  Volume hologram multiplexing using a deterministic phase encoding method , 1991 .

[9]  G Roosen,et al.  Potentialities and limitations of hologram multiplexing by using the phase-encoding technique. , 1992, Applied optics.

[10]  D. White,et al.  Coded multiple exposure holograms. , 1968, Applied optics.

[11]  W C Su,et al.  Three-dimensional shifting selectivity of random phase encoding in volume holograms. , 2001, Applied optics.

[12]  Bahram Javidi,et al.  Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator. , 2003, Applied optics.

[13]  P. J. van Heerden,et al.  Theory of Optical Information Storage in Solids , 1963 .

[14]  C Denz,et al.  Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing. , 1996, Optics letters.

[15]  B. Javidi,et al.  Encrypted optical storage with wavelength-key and random phase codes. , 1999, Applied optics.

[16]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[17]  J F Walkup,et al.  Multiplex holography with chirp-modulated binary phase-coded reference-beam masks. , 1979, Applied optics.

[18]  J F Walkup,et al.  Multiplex hologram representations of space-variant optical systems using ground-glass encoded reference beams. , 1982, Applied optics.

[19]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[20]  B Javidi,et al.  Secure optical storage that uses fully phase encryption. , 2000, Applied optics.

[21]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[22]  Ching-Cherng Sun,et al.  Duplication of phase key for random-phase-encrypted volume holograms. , 2004, Applied optics.