Optical manipulation of nanoparticles: a review

Optical trapping is an established field for movement of micron-size objects and cells. However, trapping of metal nanoparticles, nanowires, nanorods and molecules has received little attention. Nanoparticles are more challenging to optically trap and they offer ample new phenomena to explore, for example the plasmon resonance. Resonance and size effects have an impact upon trapping forces that causes nanoparticle trapping to differ from micromanipulation of larger micron-sized objects. There are numerous theoretical approaches to calculate optical forces exerted on trapped nanoparticles. Their combination and comparison gives the reader deeper understanding of the physical processes in an optical trap. A close look into the key experiments to date demonstrates the feasibility of trapping and provides a grasp of the enormous possibilities that remain to be explored. When constructing a single-beam optical trap, particular emphasis has to be placed on the choice of imaging for the trapping and confinement of nanoparticles.

[1]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[2]  L. Ward,et al.  Optical properties of discontinuous gold films , 1976 .

[3]  Entrapping Polymer Chain in Light Well under Good Solvent Condition , 2004, cond-mat/0408445.

[4]  A. Ashkin,et al.  Applications of laser radiation pressure. , 1980, Science.

[5]  S. Barnett,et al.  Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. , 2006, Optics express.

[6]  J. Leach,et al.  Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers , 2007 .

[7]  Anthony E. Siegman,et al.  Defining, measuring, and optimizing laser beam quality , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[8]  David Klenerman,et al.  Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy. , 2006, Journal of the American Chemical Society.

[9]  O. Hunderi,et al.  Optical properties of ultrafine gold particles , 1977 .

[10]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[11]  Henry Ehrenreich,et al.  Optical Properties of Noble Metals. II. , 1965 .

[12]  Steven B. Smith,et al.  Ten years of tension: single-molecule DNA , 2003 .

[13]  Alexander Rohrbach,et al.  Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. , 2002, Applied optics.

[14]  Richard N. Zare,et al.  Biased Diffusion, Optical Trapping, and Manipulation of Single Molecules in Solution , 1996 .

[15]  Romain Quidant,et al.  Tunable optical sorting and manipulation of nanoparticles via plasmon excitation. , 2006, Optics letters.

[16]  Alfons van Blaaderen,et al.  Manipulating metal-oxide nanowires using counter-propagating optical line tweezers. , 2007, Optics express.

[17]  G. Roosen,et al.  Optical levitation by means of two horizontal laser beams: A theoretical and experimental study , 1976 .

[18]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Vassilios Yannopapas Optical forces near a plasmonic nanostructure , 2008 .

[20]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[21]  D. Grier A revolution in optical manipulation , 2003, Nature.

[22]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[23]  Eirini Theofanidou,et al.  Spherical aberration correction for optical tweezers , 2004 .

[24]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[25]  Halina Rubinsztein-Dunlop,et al.  Collecting single molecules with conventional optical tweezers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  V. Subramaniam,et al.  Force detection in optical tweezers using backscattered light. , 2005, Optics express.

[27]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[28]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[29]  Matthew Pelton Comment on "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition". , 2004, Physical review letters.

[30]  Takuya Iida,et al.  Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. , 2003, Physical review letters.

[31]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[32]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[33]  Jorge O. Tocho,et al.  Size dependence of refractive index of gold nanoparticles , 2006 .

[34]  D. Murphy Fundamentals of Light Microscopy and Electronic Imaging , 2001 .

[35]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[36]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[37]  Ting Yu,et al.  The manipulation and assembly of CuO nanorods with line optical tweezers , 2004 .

[38]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[39]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[40]  I. Brevik,et al.  Oscillations of a water droplet illuminated by a linearly polarized laser pulse , 1999 .

[41]  Mattias Goksör,et al.  Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution , 2004 .

[42]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[43]  M. D. Coutts,et al.  Optical Properties of Granular Silver and Gold Films , 1973 .

[44]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[45]  B Agate,et al.  Femtosecond optical tweezers for in-situ control of two-photon fluorescence. , 2004, Optics express.

[46]  G Gouesbet,et al.  Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. , 1996, Applied optics.

[47]  K. Torimitsu,et al.  Single Nanoparticle Trapping Using a Raman Tweezers Microscope , 2002 .

[48]  P. C. Chaumet,et al.  Electromagnetic force on a metallic particle in the presence of a dielectric surface. , 2000 .

[49]  David Grier,et al.  Processing carbon nanotubes with holographic optical tweezers. , 2004, Optics express.

[50]  G. Volpe,et al.  Backscattering position detection for photonic force microscopy , 2007 .

[51]  R. V. Jones Radiation pressure of light in a dispersive medium , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[53]  Jonathan Leach,et al.  Aberration correction in holographic optical tweezers. , 2006, Optics express.

[54]  Kishan Dholakia,et al.  Optical vortex trap for resonant confinement of metal nanoparticles. , 2008, Optics express.

[55]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. , 2004, Applied optics.

[56]  L. Oddershede,et al.  Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. , 2007, Optics letters.

[57]  T. Lindmo,et al.  Calculation of the trapping force in a strongly focused laser beam , 1992 .

[58]  A. Mizuno,et al.  Direct laser trapping of single DNA molecules in the globular state. , 1998, Nucleic acids research.

[59]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[60]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[61]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[62]  Iver Brevik,et al.  Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor , 1979 .

[63]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[64]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[65]  Fredrik Svedberg,et al.  Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. , 2006, Nano letters.

[66]  Arisato Kawabata,et al.  Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption , 1966 .

[67]  Kebin Shi,et al.  Manipulation and spectroscopy of a single particle by use of white-light optical tweezers. , 2005, Optics letters.

[68]  Yael Roichman,et al.  Manipulation and assembly of nanowires with holographic optical traps. , 2005, Optics express.

[69]  Giuseppe Chirico,et al.  Trapped Brownian Motion in Single- and Two-Photon Excitation Fluorescence Correlation Experiments , 2002 .

[70]  Jin Au Kong,et al.  Lorentz Force on Dielectric and Magnetic Particles , 2006 .

[71]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods using plasmon resonances , 2006, SPIE Optics + Photonics.

[72]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[73]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[74]  Kishan Dholakia,et al.  Construction and calibration of an optical trap on a fluorescence optical microscope , 2007, Nature Protocols.

[75]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[76]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[77]  A. J. Devaney,et al.  Multipole expansions and plane wave representations of the electromagnetic field , 1974 .

[78]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[80]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[81]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[82]  J. Hotta,et al.  Analysis of radiation pressure exerted on a metallic particle within an evanescent field. , 2000, Optics letters.

[83]  J. Richard McIntosh Book Review: Guidebook to Modern Microscopy: Fundamentals of Light Microscopy and Electronic Imaging, by Douglas B. Murphy; 368 pp.; Wiley-Liss (New York); ISBN 0-471-25391-X. , 2002 .

[84]  Hongxing Xu,et al.  Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam , 2008 .

[85]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[86]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[87]  Satoshi Kawata,et al.  Near-Field Scanning Optical Microscope with a Laser Trapped Probe , 1994 .

[88]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[89]  Raoul Kopelman,et al.  Optical trapping near resonance absorption. , 2002, Applied optics.

[90]  Miriam W. Allersma,et al.  Two-dimensional tracking of ncd motility by back focal plane interferometry. , 1998, Biophysical journal.

[91]  Shida Tan,et al.  Optical Trapping of Single-Walled Carbon Nanotubes , 2004 .

[92]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[93]  David Klenerman,et al.  Optically Biased Diffusion of Single Molecules Studied by Confocal Fluorescence Microscopy , 1998 .

[94]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[95]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[96]  Xiu-Dong Sun,et al.  Multidimensional manipulation of carbon nanotube bundles with optical tweezers , 2006 .