Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry

The sections in this article are Introduction and Scope Electron Energy Levels in Semiconductors and Energy Band Model The Semiconductor–Electrolyte Interface at Equilibrium The Equilibration Process The Depletion Layer Mapping of the Semiconductor Band-edge Positions Relative to Solution Redox Levels Surface States and Other Complications Charge Transfer Processes in the Dark Current-potential Behavior Dark Processes Mediated by Surface States or by Space Charge Layer Recombination Rate-limiting Steps in Charge Transfer Processes in the Dark Light Absorption by the Semiconductor Electrode and Carrier Collection Light Absorption and Carrier Generation Carrier Collection Photocurrent-potential Behavior Dynamics of Photoinduced Charge Transfer Hot Carrier Transfer Multielectron Photoprocesses Nanocrystalline Semiconductor Films and Size Quantization Introductory Remarks The Nanocrystalline Film–Electrolyte Interface and Charge Storage Behavior in the Dark Photoexcitation and Carrier Collection: Steady State Behavior Photoexcitation and Carrier Collection: Dynamic Behavior Size Quantization Chemically Modified Semiconductor–Electrolyte Interfaces Single Crystals Nanocrystalline Semiconductor Films and Composites Types of Photoelectrochemical Devices Conclusion Acknowledgments

[1]  L. Peter,et al.  Photocurrent doubling during the oxidation of formic acid at n-CdS: an investigation by intensity modulated photocurrent spectroscopy , 1991 .

[2]  C. Chidsey,et al.  Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface , 1991, Science.

[3]  G. Horowitz Capacitance-voltage measurements and flat-band potential determination on Zr-doped α-Fe2O3 single-crystal electrodes , 1983 .

[4]  A. Goossens,et al.  Electron Trapping in Porphyrin-Sensitized Porous Nanocrystalline TiO2 Electrodes , 1996 .

[5]  S. R. Morrison,et al.  Chemical Reactions Involving Holes at the Zinc Oxide Single Crystal Anode , 1968 .

[6]  W. Lorenz,et al.  Current-voltage relations in semiconductor interfacial systems: comparison of electrodes and heterojunctions , 1988 .

[7]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[8]  S. Kocha,et al.  Electron Transfer Rate Constants for Majority Electrons at GaAs and GaInP2 Semiconductor−Liquid Interfaces , 1997 .

[9]  L. Peter,et al.  The reduction of oxygen at illuminated p-GaAs: further evidence for a current doubling mechanism , 1985 .

[10]  G. Oskam,et al.  The electrochemistry of InP in aqueous K3Cr(CN)6 solution , 1992 .

[11]  T. Mallouk,et al.  Bipolar TiO2/Pt semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting , 1986 .

[12]  C. Murphy,et al.  Photoluminescence-Based Correlation of Semiconductor Electric Field Thickness with Adsorbate Hammett Substituent Constants. Adsorption of Aniline Derivatives onto Cadmium Selenide , 1990 .

[13]  Stuart Licht,et al.  Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion , 2001 .

[14]  Anders Hagfeldt,et al.  Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells , 1994 .

[15]  N. Lewis,et al.  Rate Constants for Charge Transfer Across Semiconductor-Liquid Interfaces , 1996, Science.

[16]  H. Morisaki,et al.  Anomalous photoresponse of n‐TiO2 electrode in a photoelectrochemical cell , 1977 .

[17]  R. H. Wilson A model for the current‐voltage curve of photoexcited semiconductor electrodes , 1977 .

[18]  I. Uhlendorf,et al.  INVESTIGATION OF THE KINETICS OF REDOX REACTIONS AT GAAS ELECTRODES BY IMPEDANCE SPECTROSCOPY , 1996 .

[19]  M. Grätzel,et al.  EPR observation of trapped electrons in colloidal titanium dioxide , 1985 .

[20]  K. Rajeshwar,et al.  Electrochemical behavior, Raman characterization, and photoelectrochemistry of cuprous thiocyanate-polypyrrole bilayers and films , 1993 .

[21]  W. Lorenz,et al.  Electronic non-equilibrium charge transfer mechanisms in alternating photocurrents on semiconductor electrodes , 1987 .

[22]  Nathan S. Lewis,et al.  Principles and Applications of Semiconductor Photoelectrochemistry , 2007 .

[23]  K. Rajeshwar,et al.  Photoelectrochemical oxidation of formate ions on nickel-titanium dioxide nanocomposite electrodes: Unusually high "current doubling" yields and manifestation of a site proximity effect , 1998 .

[24]  J. Sites,et al.  Light-induced junction modification in (Cd, Zn)S/CuInSe2solar cells , 1984, IEEE Transactions on Electron Devices.

[25]  A. Bard,et al.  Demonstration of electrochemical generation of solution-phase hot electrons at oxide-covered tantalum electrodes by direct electrogenerated chemiluminescence , 1998 .

[26]  Krishnan Rajeshwar,et al.  Photoelectrochromism in Chemically Modified Nickel−Titanium Dioxide Nanocomposite Films , 1998 .

[27]  A. Bard,et al.  IMPROVED PHOTOCATALYTIC ACTIVITY AND CHARACTERIZATION OF MIXED TIO2/SIO2 AND TIO2/AL2O3 MATERIALS , 1997 .

[28]  Akira Fujishima,et al.  Photoelectrochemical oxidation of alcohols on polycrystalline zinc oxide. , 1984 .

[29]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films , 1997 .

[30]  B. K. Hodnett Photocatalytic purification and treatment of water and air : by D.F. Ollis and H. Al-Ekabi (Editors), Elsevier Science Publishers BV, Amsterdam, 1993, ISBN 0-444-89855-7, xiv + 820 pp., f450.00/$257.25 , 1994 .

[31]  J. Libman,et al.  Controlling the Work Function of GaAs by Chemisorption of Benzoic Acid Derivatives , 1997 .

[32]  N. Lewis,et al.  630‐mV open circuit voltage, 12% efficient n‐Si liquid junction , 1984 .

[33]  John Bardeen,et al.  Surface States and Rectification at a Metal Semi-Conductor Contact , 1947 .

[34]  B. Erné,et al.  On the increase of the photocurrent quantum efficiency of GaP photoanodes due to (photo)anodic pretreatments , 1995 .

[35]  R. L. Meirhaeghe,et al.  A quantitative expression for partial Fermi level pinning at semiconductor/redox electrolyte interfaces , 1985 .

[36]  M. A. Baltanás,et al.  Photocatalytic Reactors. 3. Kinetics of the Decomposition of Chloroform Including Absorbed Radiation Effects , 1996 .

[37]  F. Cardon,et al.  On the Interpretation of Mott‐Schottky Plots Determined at Semiconductor/Electrolyte Systems , 1975 .

[38]  L. Brillson Chemical mechanisms of Schottky barrier formation , 1979 .

[39]  P. Allongue,et al.  Band-edge shift and surface charges at illuminated n-GaAs/aqueous electrolyte junctions: surface-state analysis and simulation of their occupation rate , 1985 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  H. Minoura,et al.  CATHODIC PHOTO-EFFECT AT CdS ELECTRODE IN AQUEOUS POLYSULFIDE SOLUTION , 1978 .

[42]  N. Lewis,et al.  Free-Energy Dependence of Electron-Transfer Rate Constants at Si/Liquid Interfaces , 1997 .

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  Carl A. Koval,et al.  Electron transfer at semiconductor electrode-liquid electrolyte interfaces , 1992 .

[45]  D. Lincot,et al.  Recombination and charge transfer at the illuminated n-CdTe/electrolyte interface. Simplified kinetic model , 1987 .

[46]  D. Haneman,et al.  Recombination effects on current-voltage characteristics of illuminated surface barrier cells , 1982 .

[47]  D. Vanmaekelbergh,et al.  DRIVING FORCE FOR ELECTRON TRANSPORT IN POROUS NANOSTRUCTURED PHOTOELECTRODES , 1999 .

[48]  Lewerenz,et al.  Deconvolution of charge injection steps in quantum yield multiplication on silicon. , 1988, Physical review letters.

[49]  A. Bard,et al.  Silica-supported ZnS.cntdot.CdS mixed semiconductor catalysts for photogeneration of hydrogen , 1985 .

[50]  R. Naaman,et al.  The Dependence of Electron Transfer Efficiency on the Conformational Order in Organic Monolayers , 1994, Science.

[51]  A. Cassano,et al.  ABSORPTION AND SCATTERING COEFFICIENTS OF TITANIUM DIOXIDE PARTICULATE SUSPENSIONS IN WATER , 1996 .

[52]  Z. Hens The Electrochemical Impedance of One-Equivalent Electrode Processes at Dark Semiconductor|Redox Electrodes Involving Charge Transfer through Surface States. 1. Theory , 1999 .

[53]  Gary Hodes,et al.  Nanocrystalline photoelectrochemical cells : a new concept in photovoltaic cells , 1992 .

[54]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[55]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[56]  J. Kelly,et al.  Study of Charge Carrier Dynamics at Illuminated ZnO Photoanodes , 1996 .

[57]  W. Lorenz,et al.  Calculation of interface and space charge layer quantities of semiconductor electrodes , 1980 .

[58]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[59]  P. Allongue,et al.  Quantitative Comparison of Fermi Level Pinning at GaAs / Metal and GaAs / Liquid Junctions , 1984 .

[60]  D. Waldeck,et al.  Electron Tunneling at the Semiconductor−Insulator−Electrolyte Interface. Photocurrent Studies of the n-InP−Alkanethiol−Ferrocyanide System , 1998 .

[61]  S. Morrison,et al.  Current-doubling reactions on titanium dioxide photoanodes , 1986 .

[62]  F. Willig,et al.  Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .

[63]  A. Heller,et al.  Photoelectrochemical hydrogen evolution and water photolyzing semiconductor suspensions: properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen , 1984 .

[64]  Automated Admittance Spectroscopy of the Semiconductor/Molten Salt Electrolyte Interface , 1984 .

[65]  W. Gissler,et al.  Photoelectrochemical Investigation on Trigonal Selenium Film Electrodes , 1980 .

[66]  Gary Hodes,et al.  A photocathodic effect at the CdS-electrolyte interface , 1981 .

[67]  P. Hoyer,et al.  Photocarrier transport in colloidal titanium dioxide films , 1993 .

[68]  Shahed U. M. Khan,et al.  A model for electron transfer at the illuminated p-type semiconductor-solution interface , 1984 .

[69]  L. Peter,et al.  Frequency response analysis of photocurrent doubling the reduction of oxygen at p-GaAs , 1986 .

[70]  D. Vanmaekelbergh,et al.  Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. , 1996, Physical review letters.

[71]  R. Tenne,et al.  Cation Electrolytic Modification of n ‐ WSe2 / Aqueous Polyiodide Photoelectrochemistry , 1995 .

[72]  A. Bard,et al.  Enhancement of electrochemical hot electron injection into electrolyte solutions at oxide-covered tantalum electrodes by thin platinum films , 1998 .

[73]  R. Tenne,et al.  Controlled photoelectrochemical etching of CdSe and observation of a photocathodic effect , 1985 .

[74]  H. Tada,et al.  Preparation of Highly Photocatalytic Nanocomposite Films Consisting of TiO2 Particles and Zn Electrodeposited on Steel , 1999 .

[75]  A. Meier,et al.  Fast Electron Transfer Across Semiconductor−Molecule Interfaces: GaAs/Co(Cp)2+/0 , 1999 .

[76]  L. Peter,et al.  Photocurrent multiplication during photodissolution of n-Si in NH4F: Deconvolution of electron injection steps by intensity modulated photocurrent spectroscopy , 1990 .

[77]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[78]  Z. Hens,et al.  The electrochemical impedance of reversible semiconductor electrodes : The n-InP/methylviologen electrode as an example , 1998 .

[79]  S. R. Morrison,et al.  The Chemical Physics of Surfaces , 1977 .

[80]  B. Erné,et al.  The anodic dissolution of InP studied by the optoelectrical impedance method—1. Competition between electron injection and hole capture at InP photoanodes , 1993 .

[81]  D. Vanmaekelbergh,et al.  Anodic stabilization and decomposition mechanisms in semiconductor (photo)-electrochemistry , 1989 .

[82]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[83]  Arie Zaban,et al.  ELECTRIC POTENTIAL DISTRIBUTION AND SHORT-RANGE SCREENING IN NANOPOROUS TIO2 ELECTRODES , 1997 .

[84]  David L. Allara,et al.  A New Class of Organized Self- Assembled Monolayers: Alkane Thiols on GaAs (100) , 1992 .

[85]  Henrik Lindström,et al.  Electron Transport in the Nanostructured TiO2-Electrolyte System Studied with Time-Resolved Photocurrents , 1997 .

[86]  G. Hodes,et al.  Heterojunction Silicon/Indium Tin Oxide Photoelectrodes: Development of Stable Systems in Aqueous Electrolytes and Their Applicability to Solar Energy Conversion and Storage , 1983 .

[87]  R. Könenkamp,et al.  Recombination in nanophase TiO2 films , 1994 .

[88]  J. V. D. Ven,et al.  Anisotropic Photoetching of III–V Semiconductors: I . Electrochemistry , 1990 .

[89]  M. Natan,et al.  Interaction of diethyldithiocarbamate with n-type cadmium sulfide and cadmium selenide: efficient photoelectrochemical oxidation to the disulfide and flat-band potential of the semiconductor as a function of adsorbate concentration , 1986 .

[90]  M. Natan,et al.  Interaction of thiols with n-type cadmium sulfide and n-type cadmium selenide in aqueous solutions: adsorption of thiolate anion and efficient photoelectrochemical oxidation to disulfides , 1986 .

[91]  G. Nogami Characterization of Semiconductor Electrodes with a Deep Impurity Level , 1982 .

[92]  S. Morrison,et al.  Anodic properties of n-Si and n-Ge electrodes in HF solution under illumination and in the dark , 1983 .

[93]  R. Memming,et al.  Comparability of redox reactions at n- and p-type semiconductor electrodes. 2. Electrochemical overpotential and recombination in view of the quasi-Fermi level concept , 1992 .

[94]  J. Kennedy,et al.  Investigation of “Current Doubling” Mechanism of Organic Compounds by the Rotating Ring Disk Electrode Technique , 1989 .

[95]  P. Bartlett,et al.  The Recombination of Photogenerated Minority Carriers in the Depletion Layer of Semiconductor Electrodes , 1983 .

[96]  S.M.Sze,et al.  Surface States and Barrier Height of Metal‐Semiconductor Systems , 1965 .

[97]  I. Lindau,et al.  New and unified model for Schottky barrier and III–V insulator interface states formation , 1979 .

[98]  S. Fonash CHAPTER 6 – Surface-Barrier Solar Cells , 1981 .

[99]  K. Rajeshwar,et al.  Preparation and characterization of nanocrystalline composite (nanocomposite) films of titanium dioxide and nickel by occlusion electrodeposition , 1997 .

[100]  N. L. Dias,et al.  The photoelectrochemical kinetics of n-type cadmium sulfide. I: The hydroquinone system , 1987 .

[101]  J. E. Meerakker The electrochemistry of alkaline K3Cr(CN)6 solutions at p-GaAs , 1988 .

[102]  S. Morrison,et al.  Chemical reactions involving anodic processes on a single-crystal zinc oxide catalyst , 1969 .

[103]  Norbert Müller,et al.  Cathodic current photoenhancement at mechanically damaged CdS electrodes , 1984 .

[104]  N. Lewis,et al.  Measurement of interfacial charge-transfer rate constants at n-type InP/CH3OH junctions , 1997 .

[105]  N. Lewis An Analysis of Charge Transfer Rate Constants for Semiconductor/Liquid Interfaces , 1991 .

[106]  K. Rajeshwar,et al.  Photoelectrochemical Behavior of Nanocomposite Films of Cadmium Sulfide, or Titanium Dioxide, and Nickel , 1997 .

[107]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[108]  A. Hagfeldt,et al.  LI AND NA DIFFUSION IN TIO2 FROM QUANTUM CHEMICAL THEORY VERSUS ELECTROCHEMICAL EXPERIMENT , 1997 .

[109]  H. Gerischer Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach , 1991 .

[110]  S. Licht,et al.  Efficient photoelectrochemical solar cells from electrolyte modification , 1990, Nature.

[111]  S. Licht,et al.  Aqueous polyiodide spectroscopy and equilibria and its effect on n-WSe2 photoelectrochemistry , 1995 .

[112]  M. Nishida A theoretical treatment of charge transfer via surface states at a semiconductor‐electrolyte interface: Analysis of the water photoelectrolysis process , 1980 .

[113]  A. Bard,et al.  Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide.cntdot.cadmium sulfide without a noble metal , 1985 .

[114]  M. Madou,et al.  Anodic Processes at the n‐ and p‐Type GaP Electrodes , 1977 .

[115]  R. Memming,et al.  Electrochemical properties of gallium phosphide in aqueous solutions , 1968 .

[116]  Krishnan Rajeshwar,et al.  Materials aspects of photoelectrochemical energy conversion , 1985 .

[117]  H. Gerischer Über den Mechanismus der anodischen Auflösung von Galliumarsenid , 1965 .

[118]  Nathan S. Lewis,et al.  Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces , 1990 .

[119]  S. Morrison Electron capture by ions at the ZnO/solution interface , 1969 .

[120]  K. Uosaki,et al.  Electroluminescence at p-type semiconductor/electrolyte interfaces , 1987 .

[121]  R. Memming,et al.  Localized Avalanche Breakdown on GaAs Electrodes in Aqueous Electrolytes , 1978 .

[122]  Z. Hens,et al.  The Electrochemical Impedance of One-Equivalent Electrode Processes at Dark Semiconductor/Redox Electrodes Involving Charge Transfer through Surface States. 2. The n-GaAs/Fe3+ System as an Experimental Example , 1999 .

[123]  F. Cardon,et al.  Calculation of the electrical impedance associated with the surface recombination of free carriers at an illuminated semiconductor/electrolyte interface , 1986 .

[124]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[125]  F. Cardon,et al.  On the electrochemical reactivity of the redox couple Fe(CN)63−/Fe(CN)64− at the single crystal zinc oxide electrode , 1973 .

[126]  P. Searson,et al.  Electrical and optical properties of porous nanocrystalline TiO2 films , 1995 .

[127]  F. Cardon,et al.  A Quantitative Analysis of Photoinduced Capacitance Peaks in the Impedance of the n ‐ GaAs Electrode , 1987 .

[128]  K. Rajeshwar,et al.  Metal/semiconductor electrocomposite photoelectrodes : behavior of Ni/TiO2 photoanodes and comparison of photoactivity of anatase and rutile modifications , 1996 .

[129]  J. Hupp,et al.  Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Conduction Band Edge Variations between H0 = −10 and H- = +26 , 1999 .

[130]  D. Meissner,et al.  Analysis of current—potential characteristics of n- and p-type semiconductor electrodes , 1992 .

[131]  W. Bonner,et al.  Spontaneous Photoelectrolysis of HBr and HI , 1982 .

[132]  J. Sites,et al.  Current‐voltage transients in (Cd,Zn)S/CuInSe2 solar cells , 1983 .

[133]  P. Notten,et al.  The Minority Carrier Recombination Resistance: A Useful Concept in Semiconductor Electrochemistry , 1985 .

[134]  J. Reichman The current‐voltage characteristics of semiconductor‐electrolyte junction photovoltaic cells , 1980 .

[135]  F. Cardon,et al.  Investigation on the Kinetics of Electroreduction Processes at Dark TiO2 and SrTiO3 Single Crystal Semiconductor Electrodes , 1980 .

[136]  K. Rajeshwar,et al.  On the design and operation of electrochemical solar cells , 1979 .

[137]  A. Manivannan,et al.  Electroluminescence at the SiC/electrolyte interface , 1988 .

[138]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[139]  K. Uosaki,et al.  Theoretical Aspects of Semiconductor Electrochemistry , 1986 .

[140]  K. Rajeshwar,et al.  Photoelectrochemical Generation of Chlorine on Catalytically Modified n‐Silicon/Indium Tin Oxide Anodes , 1982 .

[141]  D. Vanmaekelbergh,et al.  Impedance spectroscopy at semiconductor electrodes: Review and recent developments , 1996 .

[142]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[143]  M. Umeno,et al.  Light invariant, efficient, multiple band gap AlGaAs/Si/metal hydride solar cell , 1999 .

[144]  L. Peter,et al.  Dynamic aspects of semiconductor photoelectrochemistry , 1990 .

[145]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .

[146]  A. Heller,et al.  Chemical passivation of carrier recombination at acid interfaces and grain boundaries of p-indium phosphide , 1983 .

[147]  L. Peter,et al.  Surface recombination at semiconductor electrodes: Part I. Transient and steady-state photocurrents , 1984 .

[148]  R. J. Gale,et al.  Surface charge and specific ion adsorption effects in photoelectrochemical devices , 1980 .

[149]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[150]  R. Memming,et al.  Analysis of Trapping and Recombination Effects in Photoelectrochemical Processes at Semiconductor Electrodes: Investigations at n‐GaAs , 1985 .

[151]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[152]  J. Schoonman,et al.  Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2 , 1997 .

[153]  Krishnan Rajeshwar,et al.  Chemically Modified Ni/TiO2 Nanocomposite Films: Charge Transfer from Photoexcited TiO2 Particles to Hexacyanoferrate Redox Centers within the Film and Unusual Photoelectrochemical Behavior , 1997 .

[154]  Donald Fitzmaurice,et al.  Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode , 1991 .

[155]  Alan Campion,et al.  Bipolar CdSe/CoS semiconductor photoelectrode arrays for unassisted photolytic water splitting , 1987 .

[156]  Bruce A. Parkinson,et al.  Enhanced photoelectrochemical solar‐energy conversion by gallium arsenide surface modification , 1978 .

[157]  D. Vanmaekelbergh,et al.  The mechanism of current-doubling reactions at ZnOphotoanodes , 1997 .

[158]  F. Cardon,et al.  A comparison of anodic charge-transfer kinetics between dark p-type and illuminated n-type GaP/Fe(CN)4−16 interfaces , 1987 .

[159]  A. Hagfeldt,et al.  Photocurrent Losses in Nanocrystalline/Nanoporous TiO2 Electrodes Due to Electrochemically Active Species in the Electrolyte , 1996 .

[160]  TamuraHideo,et al.  TWO STEP OXIDATION REACTIONS OF ALCOHOLS ON AN ILLUMINATED RUTILE ELECTRODE , 1976 .

[161]  P. Salvador,et al.  Mechanisms of Charge Transfer at the Semiconductor‐Electrolyte Interface I . Kinetics of Electroreduction at Dark of and in Aqueous Solution on a Sintered Nb‐doped Electrode: Influence of pH , 1984 .

[162]  K. Rajeshwar Charge Transfer in Photoelectrochemical Devices via Interface States: Unified Model and Comparison with Experimental Data , 1982 .

[163]  Adam Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[164]  Y. Rosenwaks,et al.  Electron transfer dynamics at p-gallium arsenide/liquid interfaces , 1992 .

[165]  A. Hagfeldt,et al.  Photoelectrochemical studies of colloidal TiO2-films : the charge separation process studied by means of action spectra in the UV region , 1992 .

[166]  K. Rajeshwar,et al.  Compositional analysis of organic–inorganic semiconductor composites , 1998 .

[167]  M. P. Dare-Edwards,et al.  The Transport and Kinetics of Minority Carriers in Illuminated Semiconductor Electrodes , 1981 .

[168]  V. A. Tyagai,et al.  The contribution of surface states to the charge transport process across CdS, CdSe-electrolyte interface , 1971 .

[169]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[170]  A. Etcheberry,et al.  Analysis of photocurrents at the semiconductor—eletrolyte junction , 1982 .

[171]  D. Cahen,et al.  Photoelectrochemical Energy Conversion and Storage The Polycrystalline Cell with Different Storage Modes , 1977 .

[172]  J. E. Meerakker The reduction of iodine at GaAs: the role of potential-redistribution at the semi-conductor/electrolyte interface , 1985 .

[173]  K. Colbow,et al.  Theory of photocurrent in semiconductor‐electrolyte junction solar cells , 1982 .

[174]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[175]  D. Vanmaekelbergh,et al.  Charge carrier dynamics in nanoporous photoelectrodes , 1998 .

[176]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[177]  K. Uosaki,et al.  Photoluminescence and impedance study of p-gallium arsenide/electrolyte interfaces under cathodic bias: evidence for flat-band potential shift during illumination and introduction of high-density surface states by platinum treatment , 1989 .

[178]  J. Chazalviel Electrochemical Transfer via Surface States: A New Formulation for the Semiconductor/Electrolyte Interface , 1982 .

[179]  K. Rajeshwar,et al.  Mott—Schottky analyses on n- and p-GaAs/room temperature chloroaluminate molten-salt interfaces , 1983 .

[180]  A. Buoncristiani,et al.  An alternative approach to charge transport in semiconducting electrodes , 1980 .

[181]  M. Linford,et al.  The Kinetics of Electron Transfer Through Ferrocene-Terminated Alkanethiol Monolayers on Gold , 1995 .

[182]  K. Rajeshwar,et al.  Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles , 1992 .

[183]  K. Rajeshwar,et al.  Photoelectrochemistry and Raman spectroelectrochemistry of cuprous thiocyanate films on copper electrodes in acidic media , 1993 .

[184]  A. Hagfeldt,et al.  Redox properties of nanoporous TiO2 (anatase) surface modified with phosphotungstic acid , 1998 .

[185]  S. Morrison,et al.  Chemical Role of Holes and Electrons in ZnO Photocatalysis , 1967 .

[186]  K. Colbow,et al.  Current transport in semiconductor-electrolyte barriers: Surface recombination and photovoltaic applications , 1983 .

[187]  J. Kelly,et al.  The Influence of Surface Recombination and Trapping on the Cathodic Photocurrent at p‐Type III‐V Electrodes , 1982 .

[188]  L. Peter,et al.  The reduction of oxygen at illuminated p-GaP: Evidence for a current doubling mechanism , 1985 .

[189]  R. Wilson Electron transfer processes at the semiconductor-electrolyte interface , 1980 .

[190]  Joseph T. Hupp,et al.  Energetics of Semiconductor Electrode/Solution Interfaces: EQCM Evidence for Charge-Compensating Cation Adsorption and Intercalation during Accumulation Layer Formation in the Titanium Dioxide/Acetonitrile System , 1995 .

[191]  S. Lindquist,et al.  An rrde investigation of light-induced cathodic currents at polycrystalline TIO2 electrodes in the presence of dioxygen: Part I. The light intensity dependence and the cathodic action spectra , 1986 .

[192]  K. Rajeshwar,et al.  Photoelectrochemical Behavior of n ‐ GaAs Electrodes in Ambient Temperature Molten Salt Electrolytes: Device Characterization and Loss Mechanisms , 1981 .

[193]  K. Micka,et al.  Anodic photooxidation of formic acid and methanol at a zinc oxide electrode and the influence of anions , 1972 .

[194]  S. Kuwabata,et al.  Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate , 1997 .

[195]  R. Souda,et al.  Crystal-face specific response of a single-crystal cadmium sulfide based ion-selective electrode , 1989 .

[196]  H. Minoura,et al.  The photoelectrochemical studies on CdS: Cu: Cl electrodes: Importance of photoconductivity effects , 1988 .

[197]  Phl Peter Notten,et al.  Hole injection reactions and the potential distribution at the p-GaAs/electrolyte interface under anodic polarization , 1984 .

[198]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[199]  K. Rajeshwar,et al.  Photoelectrochemical oxidation of halide ions at naked, catalytically modified, and polymer-coated n-CdS electrodes in aqueous media , 1985 .

[200]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[201]  L. Peter,et al.  Time and Frequency Resolved Studies of Photoelectrochemical Kinetics , 1999 .

[202]  S. Licht A description of energy conversion in photoelectrochemical solar cells , 1987, Nature.

[203]  S. Morrison,et al.  Photoanodic properties of an n-type silicon electrode in aqueous solutions containing fluorides , 1983 .

[204]  T. C. Mcgill Phenomenology of metal-semiconductor electrical barriers , 1974 .

[205]  K. Rajeshwar,et al.  Mechanisms of Charge Transfer at the n ‐ GaAs / Room Temperature Molten Salt Electrolyte Interface , 1981 .

[206]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[207]  Amit Kumar,et al.  The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts , 1993 .

[208]  D. Cahen,et al.  Electrocatalytic Electrodes for the Polysulfide Redox System , 1980 .

[209]  F. A. Kröger,et al.  Relations between the Concentrations of Imperfections in Crystalline Solids , 1956 .

[210]  K. Rajeshwar,et al.  Photoelectrochemical Oxidation of Aqueous Sulfite on Ni−TiO2 Composite Film Electrodes , 2000 .

[211]  S. Kuwabata,et al.  Light image formations on deprotonated polyaniline films containing titania particles , 1993 .

[212]  H. Goossens,et al.  (Photo)electrochemistry: a suitable tool for investigating wet etching processes on III–V semicondutors , 1992 .

[213]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[214]  H. Reiss Photocharacteristics for Electrolyte‐Semiconductor Junctions , 1978 .

[215]  A. Heller,et al.  Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds , 1992 .

[216]  K. Uosaki,et al.  Effects of the Helmholtz Layer Capacitance on the Potential Distribution at Semiconductor/Electrolyte Interface and the Linearity of the Mott‐Schottky Plot , 1983 .

[217]  Krishnan Rajeshwar,et al.  Preparation, photoelectrochemical characterization, and photoelectrochromic behavior of metal hexacyanoferrate-titanium dioxide composite films , 2000 .

[218]  L. Peter,et al.  Surface recombination at semiconductor electrodes: Part II. Photoinduced “near-surface” recombination centres in p-GaP , 1984 .

[219]  J. Hickman,et al.  Face-specific interactions of anionic sulfur donors with oriented crystals of (0001) CdX (X = selenium, sulfur) and correlation with electrochemical properties , 1991 .

[220]  K. Uosaki,et al.  First observation of electroluminescence at the p-type semiconductor/electrolyte interface caused by electron injection: energetics of adsorbed hydrogen at the p-GaAs electrode , 1986 .

[221]  N. Lewis,et al.  Studies of the n-GaAs/KOH−Se22−−Se2− semiconductor/liquid junction , 1989 .

[222]  K. Colbow,et al.  Voltage dependence of the dark and photocurrents in semiconductor-electrolyte junctions , 1981 .

[223]  D. Vanmaekelbergh Direct and surface state mediated electron transfer at semiconductor/electrolyte junctions—II. A comparison of the interfacial admittance , 1997 .

[224]  F. Cardon,et al.  Studies on the n‐GaAs Photoanode in Aqueous Electrolytes. 3. Recombination Resistance , 1986 .

[225]  P. A. Cox The Electronic Structure And Chemistry Of Solids , 1987 .

[226]  H. Cachet,et al.  Surface evolution of n-GaAs in contact with acetonitrile solutions studied by electrochemical impedance spectroscopy , 1992 .

[227]  M. Graetzel,et al.  Discovery of reversible photochromism in titanium dioxide using photoacoustic spectroscopy: implications for the investigation of light-induced charge-separation and surface redox processes in titanium dioxide , 1988 .

[228]  H. Gerischer,et al.  Electroluminescence at Semiconductor Electrodes Caused by Hole Injection from Electrolytes , 1976 .

[229]  Donald Fitzmaurice,et al.  Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode , 1991 .

[230]  F. Cardon,et al.  On the impedance associate with electron-hole recombination in the space charge layer of an illuminated semiconductor/electrolyte interface , 1988 .

[231]  D. Cahen,et al.  Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes , 1977 .

[232]  佐藤 教男 Electrochemistry at metal and semiconductor electrodes , 1998 .

[233]  F. Cardon Impedance- and noise-spectrum calculation for a semiconductor-electrolyte interface with electron transfer through surface states , 1972 .

[234]  M. Newton,et al.  Rates of Interfacial Electron Transfer through π-Conjugated Spacers , 1997 .

[235]  A. Hagfeldt,et al.  Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients , 1999 .