CONVERGENCE OF SEQUENTIAL MARKOV CHAIN MONTE CARLO METHODS: I. NONLINEAR FLOW OF PROBABILITY MEASURES

Sequential Monte Carlo Samplers are a class of sto- chastic algorithms for Monte Carlo integral estimation w.r.t. proba- bility distributions, which combine elements of Markov chain Monte Carlo methods and importance sampling/resampling schemes. We develop a stability analysis by funtional inequalities for a nonlin- ear ∞ow of probability measures describing the limit behavior of the methods as the number of particles tends to inflnity. Stability results are derived both under global and local assumptions on the generator of the underlying Metropolis dynamics. This allows us to prove that the combined methods sometimes have good asymp- totic stability properties in multimodal setups where traditional MCMC methods mix extremely slowly. For example, this holds for the mean fleld Ising model at all temperatures.

[1]  Dana Randall,et al.  Torpid mixing of simulated tempering on the Potts model , 2004, SODA '04.

[2]  Sergio Albeverio,et al.  Reconstructing Transition Probabilities of a Markov Chain from Partial Observation in Space , 2006 .

[3]  H. Abels,et al.  The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels , 2006, math/0610445.

[4]  Benjamin Berkels,et al.  Cartoon Extraction Based on Anisotropic Image Classification Vision , Modeling , and Visualization Proceedings , 2006 .

[5]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[6]  S. Albeverio,et al.  Coupling in the singular limit of thin quantum waveguides , 2006, math-ph/0611059.

[7]  Eric Moulines,et al.  Inference in Hidden Markov Models (Springer Series in Statistics) , 2005 .

[8]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[9]  Lorenzo Giacomelli,et al.  Smooth zero-contact-angle solutions to a thin-film equation around the steady state☆ , 2008 .

[10]  S. Albeverio,et al.  Derivations on the algebra of measurable operators affiliated with a type I von Neumann algebra , 2007 .

[11]  Neal Madras,et al.  On the swapping algorithm , 2003, Random Struct. Algorithms.

[12]  Ross T. Whitaker,et al.  Anisotropic Curvature Motion for Structure Enhancing Smoothing of 3D MR Angiography Data , 2007, Journal of Mathematical Imaging and Vision.

[13]  Benjamin Berkels,et al.  Identification of Grain Boundary Contours at Atomic Scale , 2007, SSVM.

[14]  P. Moral,et al.  On the stability of interacting processes with applications to filtering and genetic algorithms , 2001 .

[15]  Andreas Eberle,et al.  STABILITY OF SEQUENTIAL MARKOV CHAIN MONTE CARLO METHODS , 2007 .

[16]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[17]  Jozef Baruník Diploma thesis , 1999 .

[18]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[19]  Eric Vigoda,et al.  Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains , 2004, math/0503537.

[20]  M. Piccioni,et al.  Importance sampling for families of distributions , 1999 .

[21]  J. L. Doob,et al.  Markov Processes and Potential Theory , 2007 .

[22]  Martin Rumpf,et al.  Modeling and simulation of magnetic-shape-memory polymer composites , 2007 .

[23]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[24]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .

[25]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[26]  Helmut Harbrecht,et al.  Analytical and numerical methods in shape optimization , 2008 .

[27]  D. Randall,et al.  Markov chain decomposition for convergence rate analysis , 2002 .

[28]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[29]  M. Bartlett,et al.  Markov Processes and Potential Theory , 1972, The Mathematical Gazette.

[30]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[31]  P. Moral,et al.  On a Class of Genealogical and Interacting Metropolis Models , 2003 .

[32]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[33]  S. Albeverio,et al.  Non-commutative Arens algebras and their derivations , 2007, math/0703170.

[34]  W. Stannat On the convergence of genetic algorithms – a variational approach , 2004 .

[35]  S. Albeverio,et al.  Derivations on the Algebra of τ-Compact Operators Affiliated with a Type I von Neumann Algebra , 2007, math/0703331.

[36]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[37]  Sergio Albeverio,et al.  Local invariants for a finite multipartite quantum system , 2007 .

[38]  M. T. Barlow,et al.  Non-local dirichlet forms and symmetric jump processes , 2006 .