Using surface-motions for locomotion of microscopic robots in viscous fluids

Microscopic robots could perform tasks with high spatial precision, such as acting in biological tissues on the scale of individual cells, provided they can reach precise locations. This paper evaluates the performance of in vivo locomotion for micron-size robots. Two appealing methods rely only on surface motions: steady tangential motion and small amplitude oscillations. These methods contrast with common microorganism propulsion based on flagella or cilia, which may lead to tangling and increased likelihood of fouling due to the large exposed surface areas. The power potentially available to such robots, as determined by previous studies, supports speeds ranging from one to hundreds of microns per second, over the range of viscosities found in biological tissue. We discuss design trade-offs among propulsion method, speed, power, shear forces and robot shape, and relate those choices to robot task requirements. This study shows that realizing such locomotion requires substantial improvements in fabrication capabilities and material properties over current technology.

[1]  Tad Hogg,et al.  Coordinating microscopic robots in viscous fluids , 2007, Autonomous Agents and Multi-Agent Systems.

[2]  Stefano Zapperi,et al.  Colloquium: Modeling friction: From nanoscale to mesoscale , 2011, 1112.3234.

[3]  Evan J Reed,et al.  Engineered piezoelectricity in graphene. , 2012, ACS nano.

[4]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009, ISRR.

[5]  H. Berg Random Walks in Biology , 2018 .

[6]  Tad Hogg,et al.  Chemical Power for Microscopic Robots in Capillaries , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[7]  N. Osterman,et al.  Finding the ciliary beating pattern with optimal efficiency , 2011, Proceedings of the National Academy of Sciences.

[8]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[9]  Robert A. Freitas,et al.  The Ideal Gene Delivery Vector: Chromallocytes, Cell Repair Nanorobots for Chromosome Replacement Therapy , 2007 .

[10]  S. Doniach Biological Physics: Energy, Information, Life , 2003 .

[11]  Samuel,et al.  Propulsion of Microorganisms by Surface Distortions. , 1996, Physical review letters.

[12]  Jonathon Howard,et al.  A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells , 2005, Science.

[13]  Bozhi Tian,et al.  Outside looking in: nanotube transistor intracellular sensors. , 2012, Nano letters.

[14]  Robert A. Freitas,et al.  Computational Tasks in Medical Nanorobotics , 2009 .

[15]  Zhiping Xu,et al.  Observation of high-speed microscale superlubricity in graphite. , 2013, Physical review letters.

[16]  J. Koiller,et al.  Micro-swimming without flagella: Propulsion by internal structures , 2011 .

[17]  K. Uchino 4.1 Piezoelectric Ceramics , 2003 .

[18]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[19]  Robert A. Freitas,et al.  Nanomedicine, Volume I: Basic Capabilities , 1999 .

[20]  E. Lauga,et al.  Jet propulsion without inertia , 2010, 1005.0591.

[21]  M. Cybulsky,et al.  Getting to the site of inflammation: the leukocyte adhesion cascade updated , 2007, Nature Reviews Immunology.

[22]  A. Mezheritsky,et al.  Elastic, dielectric, and piezoelectric losses in piezoceramics: how it works all together , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  L. Heltai,et al.  Numerical Strategies for Stroke Optimization of Axisymmetric Microswimmers , 2009, 0906.4502.

[24]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[25]  Tony S. Yu,et al.  Soft swimming: exploiting deformable interfaces for low reynolds number locomotion. , 2008, Physical review letters.

[26]  A. Fetter,et al.  Theoretical mechanics of particles and continua , 1980 .

[27]  T. Y. Wu,et al.  A porous prolate-spheroidal model for ciliated micro-organisms , 1977, Journal of Fluid Mechanics.

[28]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[29]  G. Oster,et al.  On the Mysterious Propulsion of Synechococcus , 2012, PloS one.

[30]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[31]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[32]  R. Ménard,et al.  Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite , 2001, Cellular microbiology.

[33]  M. Tucsnak,et al.  Controllability and Time Optimal Control for Low Reynolds Numbers Swimmers , 2013 .

[34]  Tad Hogg,et al.  Acoustic communication for medical nanorobots , 2012, Nano Commun. Networks.

[35]  Christopher E. Brennen,et al.  Fluid Mechanics of Propulsion by Cilia and Flagella , 1977 .

[36]  S. Martel,et al.  Flagellated bacterial nanorobots for medical interventions in the human body , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[37]  A M Minor,et al.  Large field-induced strains in a lead-free piezoelectric material. , 2011, Nature Nanotechnology.

[38]  M. Graham,et al.  Transport and collective dynamics in suspensions of confined swimming particles. , 2005, Physical review letters.

[39]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[40]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[41]  Richard T. Lee,et al.  Cell mechanics and mechanotransduction: pathways, probes, and physiology. , 2004, American journal of physiology. Cell physiology.

[42]  T. Jahn,et al.  Locomotion of Protozoa , 1972 .

[43]  Tad Hogg,et al.  Controlling Tiny Multi-Scale Robots for Nerve Repair , 2005, AAAI.

[44]  Antonio Amodeo,et al.  Nano- and microrobotics: how far is the reality? , 2008, Expert review of anticancer therapy.

[45]  S. Martel,et al.  MRI visualization of a single 15 µm navigable imaging agent and future microrobot , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[46]  D B Dusenbery,et al.  Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. , 1998, Biophysical journal.

[47]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[48]  Jair Koiller,et al.  Could cell membranes produce acoustic streaming? Making the case for Synechococcus self-propulsion , 2011, Math. Comput. Model..

[49]  D. Soldati,et al.  The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. , 2004, Trends in cell biology.

[50]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[51]  M. Radosavljevic,et al.  Biological Physics: Energy, Information, Life , 2003 .

[52]  A. Leshansky,et al.  A frictionless microswimmer , 2007, physics/0701080.

[53]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[54]  R. Freitas,et al.  Exploratory design in medical nanotechnology: a mechanical artificial red cell. , 1998, Artificial cells, blood substitutes, and immobilization biotechnology.

[55]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[56]  Christodoulos Stefanadis,et al.  Vascular wall shear stress: basic principles and methods. , 2005, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese.

[57]  M. J. Lighthill,et al.  On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers , 1952 .

[58]  Christopher E. Brennen,et al.  An oscillating-boundary-layer theory for ciliary propulsion , 1974, Journal of Fluid Mechanics.

[59]  Kazushi Ishiyama,et al.  Magnetic micromachines for medical applications , 2002 .

[60]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[61]  R. Freitas Pharmacytes: an ideal vehicle for targeted drug delivery. , 2006, Journal of nanoscience and nanotechnology.

[62]  Jeffrey S. Guasto,et al.  Fluid Mechanics of Planktonic Microorganisms , 2012 .

[63]  H. Berg,et al.  Do cyanobacteria swim using traveling surface waves? , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[64]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[65]  Jacqueline Krim,et al.  Surface science and the atomic-scale origins of friction: what once was old is new again , 2002 .

[66]  Xudong Wang,et al.  Waves Direct-Current Nanogenerator Driven by Ultrasonic , 2008 .

[67]  Michael J. Shelley,et al.  Modeling simple locomotors in Stokes flow , 2010, J. Comput. Phys..

[68]  F. Wilczek,et al.  Geometry of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[69]  P. Král,et al.  Chemically tunable nanoscale propellers of liquids. , 2007, Physical review letters.

[70]  Ann Ager,et al.  Inflammation: Border crossings , 2003, Nature.

[71]  P. Davies,et al.  Flow-mediated endothelial mechanotransduction. , 1995, Physiological reviews.

[72]  Robert A. Freitas,et al.  Nanomedicine, Volume Iia: Biocompatibility , 2003 .

[73]  B. Boser,et al.  Low friction liquid bearing mems micromotor , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[74]  J. Blake,et al.  A spherical envelope approach to ciliary propulsion , 1971, Journal of Fluid Mechanics.

[75]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[76]  Yuhong Cao,et al.  Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. , 2013, ACS nano.

[77]  Zhi-guo Zhou,et al.  Biomimetic Cilia Based on MEMS Technology , 2008 .

[78]  F. White Viscous Fluid Flow , 1974 .

[79]  N. Riley Acoustic Streaming , 1998 .

[80]  J. Hanes,et al.  Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. , 2009, Advanced drug delivery reviews.

[81]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[82]  E. Purcell Life at Low Reynolds Number , 2008 .

[83]  T. Hogg,et al.  Mobile microscopic sensors for high resolution in vivo diagnostics. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[84]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009 .

[85]  B. Chen,et al.  DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. , 2001, Physiological genomics.

[86]  F. Hosoda,et al.  A BAC-based STS-content map spanning a 35-Mb region of human chromosome 1p35-p36. , 2001, Genomics.

[87]  E. Lauga,et al.  Efficiency optimization and symmetry-breaking in a model of ciliary locomotion , 2010, 1007.2101.

[88]  Takuji Ishikawa,et al.  Coherent structures in monolayers of swimming particles. , 2008, Physical review letters.

[89]  F. Wilczek,et al.  Efficiencies of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.