Robust novelty detection in the framework of a contamination neighbourhood

A novelty detection robust model is studied in the paper. It is based on contaminated robust models which produce a set of probability distributions of data points instead of the empirical distribution. The minimax and minimin strategies are used to construct optimal separating functions. An algorithm for computing the optimal parameters of the novelty detection model is reduced to a finite number of standard SVM tasks with weighted data points. Experimental results with synthetic and some real data illustrate the proposed novelty detection robust model.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Yue Wang,et al.  Weighted support vector machine for data classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[3]  Don R. Hush,et al.  A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..

[4]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[5]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[6]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[7]  Colin Campbell,et al.  Kernel methods: a survey of current techniques , 2002, Neurocomputing.

[8]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[9]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[10]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[11]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[12]  Mário A. T. Figueiredo,et al.  Soft clustering using weighted one-class support vector machines , 2009, Pattern Recognit..

[13]  Jinbo Bi,et al.  Support Vector Classification with Input Data Uncertainty , 2004, NIPS.

[14]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[15]  Jie Wang,et al.  Gaussian kernel optimization for pattern classification , 2009, Pattern Recognit..

[16]  Thomas Augustin,et al.  Powerful algorithms for decision making under partial prior information and general ambiguity attitudes , 2005, ISIPTA.

[17]  Anthony C. Atkinson,et al.  Robust classification with categorical variables , 2006 .

[18]  Massimiliano Pontil,et al.  Regularization and statistical learning theory for data analysis , 2002 .

[19]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[20]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[21]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[22]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[23]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[24]  L. Ghaoui,et al.  Robust Classification with Interval Data , 2003 .

[25]  Charles Bouveyron,et al.  Robust supervised classification with mixture models: Learning from data with uncertain labels , 2009, Pattern Recognit..

[26]  Jacek M. Zurada,et al.  A Class of Single-Class Minimax Probability Machines for Novelty Detection , 2007, IEEE Transactions on Neural Networks.

[27]  Koby Crammer,et al.  Robust Support Vector Machine Training via Convex Outlier Ablation , 2006, AAAI.

[28]  Theodore B. Trafalis,et al.  Robust support vector machines for classification and computational issues , 2007, Optim. Methods Softw..

[29]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[30]  Colin Campbell,et al.  A Linear Programming Approach to Novelty Detection , 2000, NIPS.

[31]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[32]  Shie Mannor,et al.  Robustness and Regularization of Support Vector Machines , 2008, J. Mach. Learn. Res..

[33]  Matthias C. M. Troffaes Decision making under uncertainty using imprecise probabilities , 2007, Int. J. Approx. Reason..

[34]  Michael I. Jordan,et al.  A Robust Minimax Approach to Classification , 2003, J. Mach. Learn. Res..

[35]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[36]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[37]  A. Bartkowiak Anomaly, Novelty, One-Class Classification: A Comprehensive Introduction , 2011 .

[38]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[39]  Shehroz S. Khan,et al.  A Survey of Recent Trends in One Class Classification , 2009, AICS.

[40]  Michael I. Jordan,et al.  Robust Novelty Detection with Single-Class MPM , 2002, NIPS.