A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids

[1]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[2]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[3]  A. Einstein Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme [AdP 22, 180 (1907)] , 2005, Annalen der Physik.

[4]  P. Debye Zur Theorie der spezifischen Wärmen , 1912 .

[5]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[6]  K. Walters,et al.  Measurement of Viscosity , 1946, Nature.

[7]  N. Sait̂o,et al.  Concentration Dependence of the Viscosity of High Polymer Solutions. I , 1950 .

[8]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[9]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[10]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[11]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[12]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[13]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[14]  B. Abeles,et al.  High‐Temperature Specific Heats of Ge, Si, and Ge‐Si Alloys , 1965 .

[15]  A. Acrivos,et al.  On the viscosity of a concentrated suspension of solid spheres , 1967 .

[16]  S. Cheng,et al.  The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures , 1969 .

[17]  R. Pohl,et al.  Thermal Conductivity and Specific Heat of Noncrystalline Solids , 1971 .

[18]  J. Watson,et al.  Effect of Size and Surface on the Specific Heat of Small Lead Particles , 1972 .

[19]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[21]  M. N. Khan,et al.  Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids , 1979 .

[22]  H. Goldsmid,et al.  Boundary scattering of phonons in fine-grained hot-pressed Ge-Si alloys. I. The dependence of lattice thermal conductivity on grain size and porosity , 1980 .

[23]  A. Graham On the viscosity of suspensions of solid spheres , 1981 .

[24]  R. Hummel Electronic properties of materials , 1985 .

[25]  Rupp,et al.  Enhanced specific-heat-capacity (cp) measurements (150-300 K) of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[26]  C. Welch,et al.  Remote measurement of in‐plane diffusivity components in plates , 1987 .

[27]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[28]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[29]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[30]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[31]  Allen,et al.  Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. , 1993, Physical review. B, Condensed matter.

[32]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[33]  X. Lu,et al.  Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers , 1995 .

[34]  Wolf,et al.  Phonon-induced anomalous specific heat of a nanocrystalline model material by computer simulation. , 1995, Physical review letters.

[35]  Sun,et al.  Heat-capacity comparison among the nanocrystalline, amorphous, and coarse-grained polycrystalline states in element selenium. , 1996, Physical review. B, Condensed matter.

[36]  Ji Rong Sun,et al.  Particle size and interfacial effect on the specific heat of nanocrystalline Fe , 1996 .

[37]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[38]  E. Michaelides,et al.  Kinetic theory and molecular dynamics simulations of microscopic flows , 1997 .

[39]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[40]  A. Gusev Effects of the nanocrystalline state in solids , 1998 .

[41]  D. Dysthe,et al.  Prediction of Fluid Mixture Transport Properties by Molecular Dynamics , 1998 .

[42]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[43]  P. B. Allen,et al.  NUMERICAL STUDY OF LOW-FREQUENCY VIBRATIONS IN AMORPHOUS SILICON , 1999 .

[44]  G. White,et al.  Heat Capacity and Thermal Expansion at Low Temperatures , 1999 .

[45]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[46]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .

[47]  Z. Pan,et al.  Linear specific heat of carbon nanotubes , 1999 .

[48]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[49]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[50]  D. Stone,et al.  Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .

[51]  P. Dutta,et al.  Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study , 2000 .

[52]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[53]  Sabu Thomas,et al.  Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres , 2000 .

[54]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[55]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[56]  S. Gustafsson,et al.  Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer , 2000 .

[57]  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[58]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[59]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[60]  Xing Zhang,et al.  Measurements of Thermal Conductivity and Electrical Conductivity of a Single Carbon Fiber , 2000 .

[61]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[62]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[63]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[64]  C. L. Matteo,et al.  Analysis of thermal diffusivity in aluminum (particle)-filled PMMA compounds , 2001 .

[65]  L. Lu,et al.  3ω method for specific heat and thermal conductivity measurements , 2001, quant-ph/0202038.

[66]  V. Popov Low-temperature specific heat of nanotube systems , 2002 .

[67]  Marc J. Assael,et al.  Application of the Transient Hot-Wire Technique to the Measurement of the Thermal Conductivity of Solids , 2002 .

[68]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[69]  V. Lemanov,et al.  Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20–1100 nm , 2002 .

[70]  Hongwei Xie,et al.  Thermal Conductivity of Suspensions Containing Nanosized SiC Particles , 2002 .

[71]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[72]  J. Lasjaunias,et al.  Low-temperature specific heat of single-wall carbon nanotubes , 2002 .

[73]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[74]  J. Hutchinson,et al.  An introduction to temperature modulated differential scanning calorimetry (TMDSC): a relatively non-mathematical approach , 2002 .

[75]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[76]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[77]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[78]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[79]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[80]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[81]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[82]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[83]  R. Smalley,et al.  Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties , 2003 .

[84]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[85]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[86]  B. Weidenfeller,et al.  Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .

[87]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[88]  A. Majumdar,et al.  Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces , 2004 .

[89]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[90]  K. Watari,et al.  Effect of Grain Size on the Thermal Conductivity of Si3N4 , 2004 .

[91]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[92]  Q. Gong,et al.  Thermal properties of aligned carbon nanotube/carbon nanocomposites , 2004 .

[93]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[94]  B. Olson,et al.  A practical extension of the 3ω method to multilayer structures , 2005 .

[95]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[96]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[97]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[98]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[99]  B. Gu,et al.  Effect of defects on the thermal conductivity in a nanowire , 2005 .

[100]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[101]  P. Ajayan,et al.  Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays , 2005 .

[102]  Marc J. Assael,et al.  Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants , 2005 .

[103]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[104]  A. Mukherjee,et al.  Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties , 2005 .

[105]  D. Cahill,et al.  Thermal Conductance of metal-metal interfaces , 2005 .

[106]  D. Rowe Thermoelectrics Handbook , 2005 .

[107]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with carbon nanotube for nanofluids , 2005 .

[108]  Agis M. Papadopoulos,et al.  State of the art in thermal insulation materials and aims for future developments , 2005 .

[109]  T. Grotjohn,et al.  Extending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films , 2006 .

[110]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[111]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[112]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[113]  S. Shah,et al.  Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties , 2006 .

[114]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[115]  Xinwei Wang,et al.  Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing , 2006 .

[116]  E. Grulke,et al.  Thermal and rheological properties of carbon nanotube-in-oil dispersions , 2006 .

[117]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[118]  B. Cao,et al.  Size effects on the thermal conductivity of polycrystalline platinum nanofilms , 2006 .

[119]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[120]  Chang Liu,et al.  Development of photothermal-resistance technique and its application to thermal diffusivity measurement of single-wall carbon nanotube bundles , 2006 .

[121]  Xinwei Wang,et al.  Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing , 2006 .

[122]  A. Majumdar,et al.  Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.

[123]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[124]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[125]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[126]  B. Wang,et al.  Surface and Size Effects on the Specific Heat Capacity of Nanoparticles , 2006 .

[127]  D. Cahill,et al.  Thermal conductance of interfaces between highly dissimilar materials , 2006 .

[128]  S. Gustafsson,et al.  Thermal conductivity as an indicator of fat content in milk , 2006 .

[129]  B. Xiang,et al.  Low-temperature specific heat of double wall carbon nanotubes , 2006 .

[130]  Z. Pan,et al.  Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays , 2006 .

[131]  Boming Yu,et al.  A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles , 2006 .

[132]  B. Yang,et al.  Temperature-dependent thermal conductivity of nanorod-based nanofluids , 2006 .

[133]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[134]  W. Zhong,et al.  Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives , 2007 .

[135]  K. Hwang,et al.  Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes , 2007 .

[136]  Xinwei Wang,et al.  Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique , 2007 .

[137]  Dongsik Kim,et al.  Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation , 2007 .

[138]  O. Tillement,et al.  Rheological properties of nanofluids flowing through microchannels , 2007 .

[139]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[140]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[141]  G. Galli,et al.  Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation. , 2007, Physical review letters.

[142]  Dae-Hwang Yoo,et al.  Study of thermal conductivity of nanofluids for the application of heat transfer fluids , 2007 .

[143]  K. Cen,et al.  Characterization of thermal diffusivity of micro/nanoscale wires by transient photo-electro-thermal technique , 2007 .

[144]  J. M. McCloskey,et al.  Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  M. Zachariah,et al.  Application of hybrid sphere/carbon nanotube particles in nanofluids , 2007 .

[146]  Boming Yu,et al.  The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles , 2007 .

[147]  I. Ivanov,et al.  The Effect of Annealing on the Electrical and Thermal Transport Properties of Macroscopic Bundles of Long Multi-Wall Carbon Nanotubes , 2007 .

[148]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[149]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[150]  D. Das,et al.  Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids , 2007 .

[151]  Saeed Zeinali Heris,et al.  EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER OF AL2O3/WATER NANOFLUID IN CIRCULAR TUBE , 2007 .

[152]  Huaqing Xie,et al.  Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays , 2007 .

[153]  D. Misra,et al.  Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture , 2007 .

[154]  G. Peterson,et al.  The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids , 2007 .

[155]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[156]  S. Min,et al.  Thermal characterization of liquids and pastes using the flash technique , 2007 .

[157]  Stephen U. S. Choi,et al.  Effects of Various Parameters on Nanofluid Thermal Conductivity , 2007 .

[158]  B. Ku,et al.  Stability and thermal conductivity characteristics of nanofluids , 2007 .

[159]  Wo-yun Long,et al.  Vibrational properties in nanocrystalline nickels: temperature effects and composite model for thermodynamics , 2008 .

[160]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[161]  A. Datye,et al.  Thermal properties of CNT-Alumina nanocomposites , 2008 .

[162]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[163]  K. Goodson,et al.  Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method , 2008 .

[164]  Hua Li,et al.  Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids , 2008 .

[165]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[166]  Wen-qiang Lu,et al.  STUDY FOR THE PARTICLE'S SCALE EFFECT ON SOME THERMOPHYSICAL PROPERTIES OF NANOFLUIDS BY A SIMPLIFIED MOLECULAR DYNAMICS METHOD , 2008 .

[167]  J. Buongiorno,et al.  Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes , 2008 .

[168]  Wenhua Yu,et al.  Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids , 2008 .

[169]  K. Leong,et al.  Characterization of electrokinetic properties of nanofluids. , 2008 .

[170]  Sheng‐Qi Zhou,et al.  Measurement of the specific heat capacity of water-based Al2O3 nanofluid , 2008 .

[171]  Huaqing Xie,et al.  Nanofluids containing carbon nanotubes treated by mechanochemical reaction , 2008 .

[172]  S. Yip,et al.  The Classical Nature of Thermal Conduction in Nanofluids , 2008, 0901.0058.

[173]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[174]  C. Kleinstreuer,et al.  Thermal performance of nanofluid flow in microchannels , 2008 .

[175]  C. Sobhan,et al.  MOLECULAR DYNAMICS MODELING OF THERMAL CONDUCTIVITY ENHANCEMENT IN METAL NANOPARTICLE SUSPENSIONS , 2008 .

[176]  Sarit K. Das,et al.  Model for thermal conductivity of CNT-nanofluids , 2008 .

[177]  Li Yu-hua,et al.  Temperature dependence of thermal conductivity of nanofluids , 2008 .

[178]  Boming Yu,et al.  CORRIGENDUM: A new model for heat conduction of nanofluids based on fractal distributions of nanopar , 2008 .

[179]  P. K. Das,et al.  Effect of Particle Size on Thermal Conductivity of Nanofluid , 2008 .

[180]  Xing Zhang,et al.  Measurements of thermal effusivity of a fine wire and contact resistance of a junction using a T type probe. , 2009, The Review of scientific instruments.

[181]  Wang Xianju,et al.  Influence of pH on Nanofluids' Viscosity and Thermal Conductivity , 2009 .

[182]  K. Hata,et al.  Thermal Diffusivity of Single-Walled Carbon Nanotube Forest Measured by Laser Flash Method , 2009 .

[183]  Jan Youtie,et al.  Where does nanotechnology belong in the map of science? , 2009, Nature nanotechnology.

[184]  D. Das,et al.  Experimental determination of thermal conductivity of three nanofluids and development of new correlations , 2009 .

[185]  X. Qiu,et al.  The specific heat of carbon nanotube networks and their potential applications , 2009 .

[186]  M. Gu,et al.  Thermal conductivity measurement of an individual fibre using a T type probe method , 2009 .

[187]  M. Wiener,et al.  Carbon Aerogel-Based High-Temperature Thermal Insulation , 2009 .

[188]  Sarit K. Das,et al.  Effect of particle size on the convective heat transfer in nanofluid in the developing region , 2009 .

[189]  A. Elkamel,et al.  A model of nanofluids effective thermal conductivity based on dimensionless groups , 2009 .

[190]  A. Salazar,et al.  Thermal diffusivity measurements of thin plates and filaments using lock-in thermography. , 2009, The Review of scientific instruments.

[191]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[192]  Shuo Yang,et al.  Influence of pH and SDBS on the Stability and Thermal Conductivity of Nanofluids , 2009 .

[193]  Yanhui Yuan,et al.  The effect of particle size on the thermal conductivity of alumina nanofluids , 2009 .

[194]  H. Duan,et al.  The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes , 2009, Nanotechnology.

[195]  D. Kessler,et al.  An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids , 2009 .

[196]  M. Buehler,et al.  Nanoengineering heat transfer performance at carbon nanotube interfaces. , 2009, ACS nano.

[197]  S. Wongwises,et al.  Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids , 2009 .

[198]  G. Ding,et al.  Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants , 2009 .

[199]  D. Das,et al.  Density Measurement of Different Nanofluids and Their Comparison With Theory , 2009 .

[200]  岑可法,et al.  Dependence of Nanofluid Viscosity on Particle Size and pH Value , 2009 .

[201]  E. Timofeeva,et al.  Particle shape effects on thermophysical properties of alumina nanofluids , 2009 .

[202]  Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method. , 2009, Nanotechnology.

[203]  H. Kurt,et al.  Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks , 2009 .

[204]  Cen Ke-fa,et al.  Dependence of Nanofluid Viscosity on Particle Size and pH Value , 2009 .

[205]  S. Paras,et al.  Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface , 2009 .

[206]  I. Tavman,et al.  Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids , 2009 .

[207]  A. Behzadmehr,et al.  A new model for calculating the effective viscosity of nanofluids , 2009 .

[208]  Zhu Dongsheng,et al.  Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids , 2009 .

[209]  Stephen U. S. Choi NANOFLUIDS: FROM VISION TO REALITY THROUGH RESEARCH , 2009 .

[210]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[211]  O. Tillement,et al.  Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[212]  Huaqing Xie,et al.  Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method , 2010 .

[213]  A. Moghadassi,et al.  A new dimensionless group model for determining the viscosity of nanofluids , 2010 .

[214]  X. Ruan,et al.  Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study , 2010, 1008.1288.

[215]  V. Rudyak,et al.  On the thermal conductivity of nanofluids , 2010 .

[216]  F. Duan,et al.  Effects of Temperature and Particle Size on the Thermal Property Measurements of Al2O3−Water Nanofluids , 2010 .

[217]  S. Wongwises,et al.  Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid , 2010 .

[218]  N. Mingo,et al.  Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .

[219]  W. Liu,et al.  Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study , 2010 .

[220]  Á. Mayoral,et al.  On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. , 2010, Physical chemistry chemical physics : PCCP.

[221]  Y. Mortazavi,et al.  Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route , 2010 .

[222]  Nuo Yang,et al.  Violation of Fourier's Law and Anomalous Heat Diffusion in Silicon , 2010, 1002.3419.

[223]  S. Suresh,et al.  Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid , 2010 .

[224]  Yu Feng,et al.  Nanofluid convective heat transfer in a parallel-disk system , 2010 .

[225]  David S. Smith,et al.  Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids , 2010, Nanotechnology.

[226]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[227]  B. Yakobson,et al.  Ballistic thermal conductance of graphene ribbons. , 2010, Nano letters.

[228]  V. Varshney,et al.  Modeling of thermal transport in pillared-graphene architectures. , 2010, ACS nano.

[229]  Wei Chen,et al.  Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets , 2010 .

[230]  S. Ramaprabhu,et al.  Investigation of thermal and electrical conductivity of graphene based nanofluids , 2010 .

[231]  Yanhui Yuan,et al.  The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures , 2010 .

[232]  K. Eichhorn,et al.  Glassy Dynamics and Glass Transition in Nanometric Thin Layers of Polystyrene , 2010 .

[233]  Ching-Jenq Ho,et al.  Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid , 2010 .

[234]  Zhang Hong-liang,et al.  Thermal capacity of nanocrystalline copper at low temperatures , 2010 .

[235]  Huaqing Xie,et al.  Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets , 2010, Nanotechnology.

[236]  C. M. Li,et al.  Nanoelectronic biosensors based on CVD grown graphene. , 2010, Nanoscale.

[237]  Y. Yue,et al.  Thermal transport in multiwall carbon nanotube buckypapers , 2010 .

[238]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[239]  R. Nair,et al.  Thermal conductivity of graphene in corbino membrane geometry. , 2010, ACS nano.

[240]  L. Fernández Barquín,et al.  Phonon softening on the specific heat of nanocrystalline metals , 2010, Nanotechnology.

[241]  Seyed Mojtaba Zebarjad,et al.  Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids , 2010 .

[242]  G. Doerk,et al.  Single nanowire thermal conductivity measurements by Raman thermography. , 2010, ACS nano.

[243]  Wei Chen,et al.  MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles , 2010 .

[244]  H. Sevinçli,et al.  Control of thermal and electronic transport in defect-engineered graphene nanoribbons. , 2011, ACS nano.

[245]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[246]  G. Mayr,et al.  Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers , 2011 .

[247]  E. Timofeeva,et al.  Nanofluids for heat transfer: an engineering approach , 2011, Nanoscale research letters.

[248]  Hongji Jiang Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. , 2011, Small.

[249]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[250]  D. Banerjee,et al.  Enhanced specific heat of silica nanofluid , 2011 .

[251]  H. Tsai,et al.  Thermal conductivity of interfacial layers in nanofluids. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[252]  H. Hong,et al.  Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles , 2011 .

[253]  T. Mckrell,et al.  Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry , 2011 .

[254]  C. Chon,et al.  A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids , 2011, Nanoscale research letters.

[255]  Xiaopeng Huang,et al.  Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K , 2011 .

[256]  Chang-rui Zhang,et al.  Thermal conductivity of low density carbon aerogels , 2012, Journal of Porous Materials.

[257]  Park Sung Dae,et al.  Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications , 2011 .

[258]  Liqiu Wang,et al.  Review of Heat Conduction in Nanofluids , 2011 .

[259]  Sarit K. Das,et al.  Thermal conductivity enhancement of nanofluids containing graphene nanosheets , 2011 .

[260]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[261]  Huaqing Xie,et al.  Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets , 2011 .

[262]  J. Thibault,et al.  Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network , 2011 .

[263]  Jian-Sheng Wang,et al.  First-principles study of heat transport properties of graphene nanoribbons. , 2010, Nano letters.

[264]  M. M. Piñeiro,et al.  CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity , 2011 .

[265]  J. C. Gomez,et al.  Nanofluid heat capacities , 2011 .

[266]  K. Khanafer,et al.  A critical synthesis of thermophysical characteristics of nanofluids , 2011 .

[267]  Jie Liu,et al.  Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel , 2011 .

[268]  Huaqing Xie,et al.  Discussion on the thermal conductivity enhancement of nanofluids , 2011, Nanoscale research letters.

[269]  D. Brenner,et al.  Vibrational Properties and Specific Heat of Ultrananocrystalline Diamond: Molecular Dynamics Simulations , 2011 .

[270]  K. P. Venkitaraj,et al.  Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties , 2011 .

[271]  Huaqing Xie,et al.  Rheological Behaviors of Nanofluids Containing Multi-Walled Carbon Nanotube , 2011 .

[272]  Xuhui Feng,et al.  Thermophysical properties of free-standing micrometer-thick Poly(3-hexylthiophene) films , 2011 .

[273]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[274]  Geunsik Lee,et al.  Thermal transport in graphene and effects of vacancy defects , 2011 .

[275]  P. Chantrenne,et al.  Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics , 2011 .

[276]  M. M. Piñeiro,et al.  Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids , 2011, Nanoscale research letters.

[277]  V. Sridhara,et al.  Al2O3-based nanofluids: a review , 2011, Nanoscale research letters.

[278]  Lin Qiu,et al.  Thermal conductivity and thermal diffusivity of SiO2 nanopowder , 2011 .

[279]  D. Banerjee,et al.  Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications , 2011 .

[280]  Xiao-jie Li,et al.  On the Influencing Factors and Strengthening Mechanism for Thermal Conductivity of Nanofluids by Molecular Dynamics Simulation , 2011 .

[281]  S. Murshed Determination of effective specific heat of nanofluids , 2011 .

[282]  Yu Feng,et al.  Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review , 2011, Nanoscale research letters.

[283]  Ramaprabhu Sundara,et al.  Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids , 2011 .

[284]  P. Ndungu,et al.  Physicochemical Properties of Oil-Based Nanofluids Containing Hybrid Structures of Silver Nanoparticles Supported on Silica , 2011 .

[285]  M. Corcione Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids , 2011 .

[286]  Rashmi Walvekar,et al.  Thermal conductivity of carbon nanotube nanofluid—Experimental and theoretical study , 2012 .

[287]  Mehdi Mehrabi,et al.  Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina–water nanofluids , 2012 .

[288]  J. Gregoire,et al.  A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials. , 2012, The Review of scientific instruments.

[289]  Rozli Zulkifli,et al.  Modelling and measuring the thermal conductivity of multi-metallic Zn/Cu nanofluid , 2013, Research on Chemical Intermediates.

[290]  Munkhbayar Batmunkh,et al.  Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. , 2012, Journal of nanoscience and nanotechnology.

[291]  K. Wasewar,et al.  Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids , 2012 .

[292]  J. Shiomi,et al.  Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion , 2012 .

[293]  D. Rashtchian,et al.  Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids , 2012 .

[294]  Dongsik Kim,et al.  Effects of aggregation on the thermal conductivity of alumina/water nanofluids , 2012 .

[295]  P. Damodharan,et al.  Thermal conductivity of CuO–DI water nanofluids using 3-ω measurement technique in a suspended micro-wire , 2012 .

[296]  Wei Lin,et al.  Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique , 2012 .

[297]  Xiaopeng Huang,et al.  New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching , 2012, Advanced materials.

[298]  P. Razi,et al.  An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes , 2012 .

[299]  A. Roy,et al.  Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces , 2012 .

[300]  J. Shiomi,et al.  Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions , 2012 .

[301]  E. Michaelides Variation of the Expansion Coefficient of Nanofluids With Temperature: A Correction for Conductivity Data , 2012 .

[302]  K. S. Rajan,et al.  Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication , 2012 .

[303]  A. Mohebbi Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation , 2012 .

[304]  A. Jacobi,et al.  Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions , 2012, Nanoscale Research Letters.

[305]  Yue-Tzu Yang,et al.  Influence of chemisorption on the thermal conductivity of graphene nanoribbons , 2012 .

[306]  Jae Won Lee,et al.  Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles , 2012 .

[307]  J. Baek,et al.  Carbon nanomaterials for advanced energy conversion and storage. , 2012, Small.

[308]  A. Rashidi,et al.  Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime , 2012 .

[309]  Yurong He,et al.  Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids , 2012 .

[310]  Martha E. Grady,et al.  Effects of chemical bonding on heat transport across interfaces. , 2012, Nature materials.

[311]  T. K. Dey,et al.  Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids , 2012 .

[312]  S. Ahzi,et al.  Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene , 2012 .

[313]  D. Das,et al.  A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power , 2012 .

[314]  A. Pacek,et al.  Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids , 2012 .

[315]  Yuwen Zhang,et al.  Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid , 2012 .

[316]  R. Velraj,et al.  Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids , 2012 .

[317]  K. Termentzidis,et al.  Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics , 2012, 1209.3485.

[318]  H. Tsai,et al.  Reduction of solid–solid thermal boundary resistance by inserting an interlayer , 2012 .

[319]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[320]  S. K. Pabi,et al.  Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids , 2013, Journal of Materials Engineering and Performance.

[321]  M. M. Piñeiro,et al.  Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids , 2012, Journal of Thermal Analysis and Calorimetry.

[322]  V. K. Nema,et al.  Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger , 2012 .

[323]  A. Yu. Kuznetsov,et al.  Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids , 2012 .

[324]  G. P. Srivastava,et al.  Phonon conductivity in graphene , 2012 .

[325]  T. Teng,et al.  Performance assessment of heat storage by phase change materials containing MWCNTs and graphite , 2013 .

[326]  K. Cen,et al.  Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials , 2013 .

[327]  M. M. Piñeiro,et al.  Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids , 2013 .

[328]  S. Ramaprabhu,et al.  Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation , 2013 .

[329]  I. Pop,et al.  A review of the applications of nanofluids in solar energy , 2013 .

[330]  J. Vlassak,et al.  Scanning AC nanocalorimetry study of Zr/B reactive multilayers , 2013 .

[331]  D. Tang,et al.  The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber , 2013 .

[332]  Min Li A nano-graphite/paraffin phase change material with high thermal conductivity , 2013 .

[333]  B. Woodfield,et al.  Low temperature heat capacity study of Fe3PO7 and Fe4(P2O7)3 , 2013 .

[334]  Robert A. Taylor,et al.  Small particles, big impacts: A review of the diverse applications of nanofluids , 2013 .

[335]  Y. Cohen,et al.  Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity , 2013, Science.

[336]  F. Tang,et al.  Flatness-dependent thermal conductivity of graphene-based composites , 2013 .

[337]  Yangyang He,et al.  Theoretical study on thermal conductivities of silica aerogel composite insulating material , 2013 .

[338]  G. Żyła,et al.  Rheological properties of diethylene glycol-based MgAl2O4 nanofluids , 2013 .

[339]  P. Singh,et al.  Detailed consideration of the electron-phonon thermal conductance at metal-dielectric interfaces , 2013 .

[340]  C. Casanova,et al.  Thermal conductivity and specific heat capacity measurements of CuO nanofluids , 2013, Journal of Thermal Analysis and Calorimetry.

[341]  P. B. Allen Improved Callaway model for lattice thermal conductivity , 2013, 1308.3269.

[342]  C. Xing,et al.  Analysis of the electrothermal technique for thermal property characterization of thin fibers , 2013 .

[343]  O. Mahian,et al.  Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports , 2013 .

[344]  S. Bardakhanov,et al.  Measurement of the viscosity coefficient of an ethylene glycol-based nanofluid with silicon-dioxide particles , 2013 .

[345]  P. Mutin,et al.  Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. , 2013, Nature materials.

[346]  A. Bontemps,et al.  Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids , 2013 .

[347]  T. K. Dey,et al.  Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids , 2013 .

[348]  C. A. N. Castro,et al.  Investigations of Viscosity of Silicone Oil-Based Semiconductor Nanofluids , 2013 .

[349]  E. Michaelides Transport properties of nanofluids. A critical review , 2013 .

[350]  Lori A. Wilson Survey on Big Data gathers input from materials community , 2013 .

[351]  A. Nemati,et al.  The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina , 2013 .

[352]  K. Jafarpur,et al.  A Molecular Dynamics Simulation for Thermal Conductivity Evaluation of Carbon Nanotube-Water Nanofluids , 2013 .

[353]  R. Yun,et al.  Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids , 2013 .

[354]  O. Mahian,et al.  Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications , 2013 .

[355]  A. Sousa,et al.  Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications , 2013 .

[356]  S. Kalaiselvam,et al.  Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanofluids as a phase change material for solar heating systems , 2013 .

[357]  F. Völklein,et al.  Measuring methods for the investigation of in‐plane and cross‐plane thermal conductivity of thin films , 2013 .

[358]  Huan Lin,et al.  Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam , 2013, Nanotechnology.

[359]  K. Thomas,et al.  Gas adsorption by nanoporous materials: Future applications and experimental challenges , 2013 .

[360]  K. S. Rajan,et al.  Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate , 2013, Journal of Nanoparticle Research.

[361]  M. J. Nine,et al.  Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization , 2013 .

[362]  C. Dames,et al.  Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures , 2013 .

[363]  K. Loos,et al.  Block copolymer template-directed synthesis of well-ordered metallic nanostructures , 2013 .

[364]  D. Tang,et al.  Design and Application of a Freestanding Sensor Based on 3ω Technique for Thermal-Conductivity Measurement of Solids, Liquids, and Nanopowders , 2013 .

[365]  J. Richard,et al.  Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method. , 2013, The Review of scientific instruments.

[366]  O. Mahian,et al.  Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations , 2014 .

[367]  O. Manca,et al.  A comparison of nanofluid thermal conductivity measurements by flash and hot disk techniques , 2014 .

[368]  K. Nelson,et al.  Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes , 2014, 1408.6747.

[369]  R. Melnik,et al.  Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials , 2014, Scientific Reports.

[370]  O. Mahian,et al.  Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids , 2014 .

[371]  Y. Li Study on Low Temperature Specific Heat Capacity of Aluminum Nanocrystalline , 2014 .

[372]  M. Hemmat Esfe,et al.  Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study , 2015, Journal of Thermal Analysis and Calorimetry.

[373]  Alexander A. Balandin,et al.  Graphene Thermal Properties: Applications in Thermal Management and Energy Storage , 2014 .

[374]  A. McGaughey,et al.  Thermal conductivity accumulation in amorphous silica and amorphous silicon , 2014 .

[375]  Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations , 2014, 1405.2372.

[376]  Thermal diffusivity measurements of templated nanocomposite using infrared thermography , 2014 .

[377]  Y. Kang,et al.  Aggregation based model for heat conduction mechanism in nanofluids , 2014 .

[378]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[379]  O. Mahian,et al.  Thermal conductivity of Al2O3/water nanofluids , 2014, Journal of Thermal Analysis and Calorimetry.

[380]  Shaohua Wu,et al.  Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation , 2014 .

[381]  K. V. Sharma,et al.  Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube , 2014 .

[382]  G. Ahmadi,et al.  An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes , 2014, Nanoscale Research Letters.

[383]  S. Kazachenko,et al.  Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS) , 2014, Journal of Thermal Analysis and Calorimetry.

[384]  Lin Qiu,et al.  The Effective Thermal Conductivity of Porous Polymethacrylimide Foams , 2014 .

[385]  J. Militký,et al.  Aerogel based nanoporous fibrous materials for thermal insulation , 2014, Fibers and Polymers.

[386]  P. Karami,et al.  Textural and thermal conductivity properties of a low density mesoporous silica material , 2014 .

[387]  D. Banerjee,et al.  Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic , 2014 .

[388]  Ya‐Ping Sun,et al.  Flexible graphene-graphene composites of superior thermal and electrical transport properties. , 2014, ACS applied materials & interfaces.

[389]  C. Pan,et al.  Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity , 2014 .

[390]  G. Żyła,et al.  On unexpected behavior of viscosity of diethylene glycol-based MgAl2O4 nanofluids , 2014 .

[391]  R. M. Khattab,et al.  Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites , 2014 .

[392]  T. Maré,et al.  Efficiency of carbon nanotubes water based nanofluids as coolants , 2014 .

[393]  O. Mahian,et al.  Performance analysis of a minichannel-based solar collector using different nanofluids , 2014 .

[394]  M. A. Amalina,et al.  Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina−Water Nanofluid , 2014 .

[395]  K. Novoselov,et al.  Thermal properties of graphene-copper-graphene heterogeneous films. , 2014, Nano letters.

[396]  A. Sousa,et al.  Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids , 2014 .

[397]  Md. Riyad Tanshen,et al.  Thermal Conductivity of TiO2 Nanoparticles Based Aqueous Nanofluids with an Addition of a Modified Silver Particle , 2014 .

[398]  A. Sousa,et al.  Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study☆ , 2014 .

[399]  Behrouz Takabi,et al.  Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid , 2014 .

[400]  E. Timofeeva,et al.  Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage , 2014 .

[401]  S. Kalaiselvam,et al.  Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids , 2014 .

[402]  Yurong He,et al.  Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids , 2015 .

[403]  B. Woodfield,et al.  Lattice vacancies responsible for the linear dependence of the low-temperature heat capacity of insulating materials , 2015 .

[404]  Sergei V. Kalinin,et al.  Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets , 2015, Advanced Structural and Chemical Imaging.

[405]  Muhammad Noor Afiq Witri Muhammad Yazid,et al.  A review on the application of nanofluids in vehicle engine cooling system , 2015 .

[406]  M. Sharifpur,et al.  Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods , 2015 .

[407]  J. Koo,et al.  Quantitative analyses of factors affecting thermal conductivity of nanofluids using an improved transient hot-wire method apparatus , 2015 .

[408]  Yulong Ding,et al.  Experimental investigation on thermal properties of silver nanofluids , 2015 .

[409]  Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures , 2015, 1505.05766.

[410]  S. Wongwises,et al.  Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation☆ , 2015 .

[411]  G. Ahmadi,et al.  Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer , 2015 .

[412]  Mingli Yang,et al.  Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids , 2015 .

[413]  K. Wasewar,et al.  Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons , 2015 .

[414]  Shaohua Wu,et al.  Effect of chaotic movements of nanoparticles for nanofluid heat transfer augmentation by molecular dynamics simulation , 2015 .

[415]  W. Yan,et al.  Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid , 2015 .

[416]  A. Minakov,et al.  Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel , 2015 .

[417]  S. Wongwises,et al.  Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications , 2016, Journal of Thermal Analysis and Calorimetry.

[418]  J. Hone,et al.  Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. , 2015, ACS applied materials & interfaces.

[419]  S. Jang,et al.  Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids , 2015 .

[420]  Zhong Yan,et al.  Thermal conductivity reduction in three dimensional graphene-based nanofoam , 2015 .

[421]  K. V. Sharma,et al.  Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations , 2015 .

[422]  M. Ashjaee,et al.  Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids , 2015 .

[423]  Ya-Ling He,et al.  Advances of thermal conductivity models of nanoscale silica aerogel insulation material , 2015 .

[424]  Scott N. Schiffres,et al.  Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. , 2015, Nano letters.

[425]  M. Afrand,et al.  An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol , 2015 .

[426]  J. L. Legido,et al.  Specific heat of metal oxide nanofluids at high concentrations for heat transfer , 2015 .

[427]  S. Yamanaka,et al.  Thermoelectric properties of heavily boron- and phosphorus-doped silicon , 2015 .

[428]  E. Goharshadi,et al.  Thermal conductivity and heat transport properties of nitrogen-doped graphene. , 2015, Journal of molecular graphics & modelling.

[429]  R. Saidur,et al.  Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States , 2015 .

[430]  Xing Zhang,et al.  Laser flash-Raman spectroscopy method for the measurement of the thermal properties of micro/nano wires. , 2015, The Review of scientific instruments.

[431]  A. Balandin,et al.  Strongly Anisotropic Thermal Conductivity of Free‐Standing Reduced Graphene Oxide Films Annealed at High Temperature , 2015 .

[432]  D. Tang,et al.  Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ω technique , 2015 .

[433]  Xuebin Wang,et al.  Recent progress on fabrications and applications of boron nitride nanomaterials: A review , 2015 .

[434]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[435]  M. Afrand,et al.  Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data , 2015 .

[436]  Rahmatollah Khodabandeh,et al.  Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids , 2015, Rheologica Acta.

[437]  Tianli Feng,et al.  Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration , 2015 .

[438]  O. Mahian,et al.  Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH , 2015 .

[439]  V. Vasu,et al.  Thermal Conductivity of Cu-Zn Hybrid Newtonian Nanofluids: Experimental Data and Modeling using Neural Network☆ , 2015 .

[440]  Jie Chen,et al.  Significant Reduction of Graphene Thermal Conductivity by Phononic Crystal Structure , 2014, 1407.5885.

[441]  W. Yan,et al.  Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids ☆ , 2015 .

[442]  M. M. Piñeiro,et al.  Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density , 2015 .

[443]  D. Cahill,et al.  Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus , 2015, Advanced materials.

[444]  R. Mamat,et al.  Thermal Conductivity Enhancement of Al2O3 Nanofluid in Ethylene Glycol and Water Mixture , 2015 .

[445]  D. Lupascu,et al.  Dense nanopowder composites for thermal insulation , 2015 .

[446]  Xinyu Lei,et al.  Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids , 2015 .

[447]  O. Manca,et al.  Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method , 2015 .

[448]  V. Rudyak,et al.  Simulation of the nanofluid viscosity coefficient by the molecular dynamics method , 2015 .

[449]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[450]  M. Afrand,et al.  Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems , 2016 .

[451]  Enrique M. Jackson Development and thermal properties of carbon nanotube-polymer composites , 2016 .

[452]  M. Afrand,et al.  An experimental study on viscosity of alumina-engine oil: Effects of temperature and nanoparticles concentration , 2016 .

[453]  K. Nemade,et al.  A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids , 2016 .

[454]  K. Wasewar,et al.  Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid☆ , 2016 .

[455]  Babita,et al.  Preparation and evaluation of stable nanofluids for heat transfer application: A review , 2016 .

[456]  S. K. Pabi,et al.  The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization , 2016, Beilstein journal of nanotechnology.

[457]  Y. Koh,et al.  Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR). , 2016, The Review of scientific instruments.

[458]  Xing Zhang,et al.  Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials , 2016 .

[459]  A. Alemrajabi,et al.  Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/Water binary mixture nanofluid , 2016 .

[460]  Marc J. Assael,et al.  Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied , 2016 .

[461]  M. Hemmat Esfe,et al.  Thermal conductivity enhancement of SiO2–MWCNT (85:15 %)–EG hybrid nanofluids , 2017, Journal of Thermal Analysis and Calorimetry.

[462]  K. Bashirnezhad,et al.  Viscosity of nanofluids: A review of recent experimental studies , 2016 .

[463]  M. Goodarzi,et al.  Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid ☆ , 2016 .

[464]  G. Żyła,et al.  Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids , 2016 .

[465]  Fosong Wang,et al.  Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer. , 2016, ACS nano.

[466]  Donghyun Shin,et al.  Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage , 2016 .

[467]  C. Zou,et al.  Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications , 2016 .

[468]  A. D'Orazio,et al.  An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration , 2016 .

[469]  P. N. Nwosu,et al.  The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models , 2016 .

[470]  Xing Zhang,et al.  A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi2S3 nanowire. , 2016, Nanoscale.

[471]  D. Tang,et al.  Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film , 2016, Scientific Reports.

[472]  D. Das,et al.  Specific heat measurements of five different propylene glycol based nanofluids and development of a new correlation , 2016 .

[473]  O. Mahian,et al.  Second law analysis of a nanofluid-based solar collector using experimental data , 2016, Journal of Thermal Analysis and Calorimetry.

[474]  M. Afrand,et al.  Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data , 2016 .

[475]  Renkun Chen,et al.  Thermal transport in amorphous materials: a review , 2016 .

[476]  A. Asadi,et al.  Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations , 2016 .

[477]  Yuri Kobayashi,et al.  Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose , 2016, Scientific Reports.

[478]  Yanping Yuan,et al.  Enhanced thermal properties of Li2CO3–Na2CO3–K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems , 2017, Journal of Thermal Analysis and Calorimetry.

[479]  Jianchao Cai,et al.  Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids , 2016 .

[480]  D. Wen,et al.  Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers , 2016 .

[481]  Jianlin Yu,et al.  Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids , 2016 .

[482]  M. Vakili,et al.  Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results , 2016 .

[483]  M. Moraveji,et al.  Electrical conductivity, viscosity, and density of different nanofluids: An experimental study , 2016 .

[484]  M. Afrand,et al.  Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network , 2016 .

[485]  Zifeng Yan,et al.  Dramatic enhancement of superconductivity in single-crystalline nanowire arrays of Sn , 2016, Scientific Reports.

[486]  M. Akbari,et al.  Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study , 2016 .

[487]  H. Karimi,et al.  Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids , 2016 .

[488]  M. Sharifpur,et al.  A new model for density of nanofluids including nanolayer , 2016 .

[489]  R. Mamat,et al.  Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system , 2016 .

[490]  Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR). , 2015, The Review of scientific instruments.

[491]  Mengshen Yang,et al.  Anomalous specific heats of metallic nanocrystals induced by surface oxidation , 2016 .

[492]  Ying Chen,et al.  A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids , 2016, Scientific reports.

[493]  B. Pate,et al.  Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties , 2016 .

[494]  Hongchao Wu,et al.  Interface-mediated extremely low thermal conductivity of graphene aerogel , 2016 .

[495]  A. H. Isfahani,et al.  Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power , 2016 .

[496]  B. T. Chew,et al.  Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids , 2016 .

[497]  M. Afrand,et al.  Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol , 2016 .

[498]  M. Afrand,et al.  Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines , 2016 .

[499]  A. Aminian Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network , 2016 .

[500]  T. Zhu,et al.  Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene. , 2016, Nano letters.

[501]  A. Amiri,et al.  Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe , 2016 .

[502]  M. Jamialahmadi,et al.  Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger , 2017, Journal of Thermal Analysis and Calorimetry.

[503]  A. Sousa,et al.  Nanodiamond-Fe3O4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities , 2016 .

[504]  Z. Tan,et al.  Low temperature calorimetry and its application in material research , 2016 .

[505]  A. Mulchandani,et al.  Thermal Conductivity of Suspended Graphene with Defects , 2016, 1603.05286.

[506]  R. K. Duchaniya,et al.  Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids , 2016 .

[507]  Shahaboddin Shamshirband,et al.  Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids , 2017 .

[508]  C. Xing,et al.  Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods , 2017 .

[509]  R. Al-Maamari,et al.  Effect of temperature and diameter of narrow single-walled carbon nanotubes on the viscosity of nanofluid: A molecular dynamics study , 2017 .

[510]  Y. Hirata,et al.  Theoretical and experimental analyses of thermal properties of porous polycrystalline mullite , 2017 .

[511]  S. Movahedirad,et al.  Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation , 2017 .

[512]  Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. , 2017, The Review of scientific instruments.

[513]  M. Afrand,et al.  Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions , 2017 .

[514]  D. Datta,et al.  Thermal characteristics of graphene nanoribbons endorsed by surface functionalization , 2017 .

[515]  吴恩启 Wu Enqi,et al.  Effect of Porosity on Thermal Diffusivity of Woven Carbon Fiber Reinforced Polymers , 2017 .

[516]  O. Mahian,et al.  Applications of nanofluids in condensing and evaporating systems , 2018, Journal of Thermal Analysis and Calorimetry.

[517]  N. Tai,et al.  Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films , 2017 .

[518]  A. Asadi,et al.  The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation , 2017 .

[519]  Jie Chen,et al.  Experimental study of thermal rectification in suspended monolayer graphene , 2017, Nature Communications.

[520]  A. S. Dalkılıç,et al.  Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids , 2017 .

[521]  Xiaodong Chen,et al.  An improved model for thermal conductivity of nanofluids with effects of particle size and Brownian motion , 2017, Journal of Thermal Analysis and Calorimetry.

[522]  G. Żyła,et al.  Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies , 2017 .

[523]  P. Estellé,et al.  Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles , 2017 .

[524]  Madan Singh,et al.  Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials , 2017 .

[525]  Xiaoliang Zhang,et al.  Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering. , 2017, Nano letters.

[526]  G. Will,et al.  Experimental study of the interactivity, specific heat, and latent heat of fusion of water based nanofluids , 2017 .

[527]  Xin-xin Zhang,et al.  Thermal transport barrier in carbon nanotube array nano-thermal interface materials , 2017 .

[528]  M. Sadi Prediction of Thermal Conductivity and Viscosity of Ionic Liquid-Based Nanofluids Using Adaptive Neuro Fuzzy Inference System , 2017 .

[529]  Ningbo Zhao,et al.  Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids , 2017, Materials.

[530]  Q. Al‐Mdallal,et al.  Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids , 2017, Scientific Reports.

[531]  N. Xu,et al.  Tailoring the thermal and electrical transport properties of graphene films by grain size engineering , 2017, Nature Communications.

[532]  A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids , 2018, Journal of Thermal Analysis and Calorimetry.

[533]  P. Estellé,et al.  The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids , 2017 .

[534]  Liyan Zhu,et al.  Tailoring thermal transport properties of graphene by nitrogen doping , 2017, Journal of Nanoparticle Research.

[535]  M. Biglari,et al.  An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation , 2017 .

[536]  Michel B. Johnson,et al.  High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology , 2017 .

[537]  Jian-guang Jia,et al.  Experimental study of TiO2 nanofluid coolant for automobile cooling applications , 2017 .

[538]  Liu Yang,et al.  Recent developments on viscosity and thermal conductivity of nanofluids , 2017 .

[539]  M. H. Esfe,et al.  Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data , 2017, Journal of Thermal Analysis and Calorimetry.

[540]  M. Afrand,et al.  Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications , 2017 .

[541]  Saeed Zeinali Heris,et al.  Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger , 2017 .

[542]  M. Afrand,et al.  Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks , 2017 .

[543]  Wenlong Cheng,et al.  Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. , 2017, ACS applied materials & interfaces.

[544]  A. Al-Rashed,et al.  New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids , 2017 .

[545]  Ali J. Chamkha,et al.  Nanofluid flow and heat transfer in porous media: A review of the latest developments , 2017 .

[546]  T. Jacob,et al.  Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films , 2017 .

[547]  S. Esfandeh,et al.  Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications , 2017 .

[548]  Jie Chen,et al.  Thermal transport in graphene with defect and doping: Phonon modes analysis , 2017 .

[549]  A. Shahsavar,et al.  Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles , 2017 .

[550]  S. Ouaskit,et al.  Modeling and simulations of nanofluids using classical molecular dynamics: Particle size and temperature effects on thermal conductivity , 2018, Advanced Powder Technology.

[551]  Chaoyi Yan,et al.  19-Fold thermal conductivity increase of carbon nanotube bundles toward high-end thermal design applications , 2018, Carbon.

[552]  Lin Qiu,et al.  Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators , 2018 .

[553]  S. Ko,et al.  Two orders of magnitude suppression of graphene's thermal conductivity by heavy dopants (Si) , 2018, Carbon.

[554]  K. V. Sharma,et al.  Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport , 2017, Solar Energy Materials and Solar Cells.

[555]  G. Żyła,et al.  Nanodiamonds – Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties , 2018, International Journal of Heat and Mass Transfer.

[556]  A. Rajabpour,et al.  Viscosity of carbon nanotube/water nanofluid , 2018, Journal of Thermal Analysis and Calorimetry.

[557]  C. Louis,et al.  Novel Nanofluids Based on Magnetite Nanoclusters and Investigation on Their Cluster Size-Dependent Thermal Conductivity , 2018 .

[558]  D. Wen,et al.  Extremely Low Thermal Conductivity of Graphene Nanoplatelets Using Nanoparticle Decoration , 2018 .

[559]  S. K. Pabi,et al.  Diversity in thermal conductivity of aqueous Al2O3- and Ag-nanofluids measured by transient hot-wire and laser flash methods , 2018, Experimental Thermal and Fluid Science.

[560]  Nishant Kumar,et al.  Experimental study of thermal conductivity, heat transfer and friction factor of Al 2 O 3 based nanofluid , 2018 .

[561]  Navid Nasajpour Esfahani,et al.  A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study , 2018 .

[562]  Xing Zhang,et al.  Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures , 2018, International Journal of Heat and Mass Transfer.

[563]  Criteria for accurate measurement of thermal diffusivity of solids using the Angstrom method , 2018, International Journal of Thermal Sciences.

[564]  A. Rajabpour,et al.  Experimental Investigation and Molecular Dynamics Simulations of Viscosity of CNT-Water Nanofluid at Different Temperatures and Volume Fractions of Nanoparticles , 2018, Journal of Chemical & Engineering Data.

[565]  Yanhui Feng,et al.  Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method. , 2018, The Review of scientific instruments.

[566]  G. Żyła,et al.  Ethylene glycol based silicon nitride nanofluids: An experimental study on their thermophysical, electrical and optical properties , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[567]  H. Ali,et al.  Thermal conductivity of hybrid nanofluids: A critical review , 2018, International Journal of Heat and Mass Transfer.

[568]  A. Minakov,et al.  Thermophysical properties of nanofluids , 2018, The European Physical Journal E.

[569]  Jiahua Zhu,et al.  A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods , 2018, Advanced Composites and Hybrid Materials.

[570]  W. Tuan,et al.  Thermal diffusivity of graphite paper and its joint with alumina substrate , 2018 .

[571]  Yongjie Hu,et al.  Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method. , 2018, The Review of scientific instruments.

[572]  M. H. Esfe,et al.  Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes , 2018 .

[573]  S. Varghese,et al.  Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid , 2018 .

[574]  Pinshane Y. Huang,et al.  Unusual high thermal conductivity in boron arsenide bulk crystals , 2018, Science.

[575]  S. Ouaskit,et al.  Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and potential interaction , 2018, Journal of Molecular Liquids.

[576]  K. Khanafer,et al.  A review on the applications of nanofluids in solar energy field , 2018, Renewable Energy.

[577]  G. Żyła,et al.  Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types: An experimental study , 2018, Journal of Molecular Liquids.

[578]  Pinshane Y. Huang,et al.  High thermal conductivity in cubic boron arsenide crystals , 2018, Science.

[579]  Xing Zhang,et al.  Development of multi-physical properties comprehensive measurement system for micro/nanoscale filamentary materials , 2018 .

[580]  Seyed Amin Bagherzadeh,et al.  Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN , 2018, International Journal of Heat and Mass Transfer.

[581]  N. Arora,et al.  Effect of size and dimension dependent specific heat on thermal conductivity of nanostructured semiconductors , 2018, Materials Chemistry and Physics.

[582]  Lin Qiu,et al.  Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers , 2018, Applied Thermal Engineering.

[583]  D. Tang,et al.  Advances in thermal transport properties at nanoscale in China , 2018, International Journal of Heat and Mass Transfer.

[584]  M. Afrand,et al.  An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation , 2018, Journal of Molecular Liquids.

[585]  A. Alibakhshi,et al.  A comparative study of molecular dynamics simulation methods for evaluation of the thermal conductivity and phonon transport in Si nanowires , 2018 .

[586]  Guoneng Li,et al.  Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method , 2018 .

[587]  Hao Wang,et al.  Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids , 2018, International Journal of Heat and Mass Transfer.

[588]  A. Shahsavar,et al.  A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network , 2019, International Journal of Heat and Mass Transfer.

[589]  Jinghua Yin,et al.  Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS , 2019, Materials Letters.

[590]  Liu Yang,et al.  Thermal conductivity enhancement of water by adding graphene Nano-sheets: Consideration of particle loading and temperature effects , 2019 .

[591]  B. Tay,et al.  Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials , 2019, Carbon.

[592]  A. Cruz-Orea,et al.  Experimental investigation on thermal properties of Ag nanowire nanofluids at low concentrations , 2019, Thermochimica Acta.

[593]  Xing Zhang,et al.  Effect of particle aggregation on thermal conductivity of nanofluids: Enhancement of phonon MFP , 2019, Journal of Applied Physics.

[594]  Wayne R. Johnson,et al.  Thermo-physical properties of diamond nanofluids: A review , 2019, International Journal of Heat and Mass Transfer.

[595]  T. Fang,et al.  Determining porosity effect on the thermal conductivity of single-layer graphene using a molecular dynamics simulation , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[596]  Xin-xin Zhang,et al.  Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity , 2019, Carbon.

[597]  Ê. B. Bandarra Filho,et al.  Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems , 2019, International Journal of Heat and Mass Transfer.

[598]  Robert A. Taylor,et al.  Recent advances in modeling and simulation of nanofluid flows—Part II: Applications , 2019, Physics Reports.

[599]  R. Al-Maamari,et al.  Molecular dynamics simulation of water–graphene nanofluid , 2019, SN Applied Sciences.

[600]  A. Turgut,et al.  Magnetic field dependent thermal conductivity measurements of magnetic nanofluids by 3ω method , 2019, Journal of Magnetism and Magnetic Materials.

[601]  Liu Yang,et al.  An updated review on the influential parameters on thermal conductivity of nano-fluids , 2019 .

[602]  M. Afrand,et al.  An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles , 2019, Journal of Cleaner Production.

[603]  Robert A. Taylor,et al.  Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory , 2019, Physics Reports.

[604]  C. Wan,et al.  Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers , 2019, Progress in Materials Science.

[605]  Seyed Amin Bagherzadeh,et al.  A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs , 2019, Physica A: Statistical Mechanics and its Applications.

[606]  Xin-xin Zhang,et al.  Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances , 2019, Carbon.