Further results on optimal optical orthogonal codes with weight 4

Abstract By a ( v , k ,1)-OOC we mean an optical orthogonal code of length v , weight k , and correlation constraints 1. In this paper, we take advantage of the equivalence between such codes and cyclic packings of pairs to make further investigation regarding the existence of a ( v ,4,1)-OOC. It is proved that an optimal ( v ,4,1)-OOC exists whenever v =3 n u with u a product of primes congruent to 1 modulo 4, or v =2 n u with u a product of primes congruent to 1 modulo 6, where n is an arbitrary positive integer and n ≠2 in the case v =2 n u . A strong indication about the existence of an optimal (2 2 u ,4,1)-OOC with u a product of primes congruent to 1 modulo 6 has been given in (M. Buratti, Des. Codes Cryptogr. 26 (2002) 111–125). The results in this paper are obtained mainly by means of a great deal of direct constructions, including using Weil's theorem with more than one independent variations.

[1]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[2]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[3]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[4]  T. Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[5]  Optical orthogonal codes: Design, . . . , 1989 .

[6]  M. Buratti Recursive constructions for difference matrices and relative difference families , 1998 .

[7]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[8]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[9]  Alexander Schrijver,et al.  Group divisible designs with block-size four , 2006, Discret. Math..

[10]  G. Ge,et al.  Starters and related codes , 2000 .

[11]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[12]  Jianxing Yin,et al.  A General Construction for Optimal Cyclic Packing Designs , 2002, J. Comb. Theory, Ser. A.

[13]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[14]  Yanxun Chang,et al.  Constructions for optimal optical orthogonal codes , 2003, Discret. Math..

[15]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[16]  Yanxun Chang,et al.  Combinatorial Constructions for Optical Orthogonal Codes , 2006 .

[17]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[18]  Jawad A. Salehi,et al.  Neuromorphic Networks Based on Sparse Optical Orthogonal Codes , 1987, NIPS.

[19]  C. Colbourn,et al.  Recursive constructions for cyclic block designs , 1984 .

[20]  Ryoh Fuji-Hara,et al.  Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..

[21]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[22]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[23]  Marshall Hall,et al.  Combinatorial Theory, 2nd Edition , 1967 .