Further results on optimal optical orthogonal codes with weight 4
暂无分享,去创建一个
[1] K. Chen,et al. Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .
[2] Marco Buratti,et al. Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..
[3] Jianxing Yin,et al. Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..
[4] T. Etzion,et al. Constructions for optimal constant weight cyclically permutable codes and difference families , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[5] Optical orthogonal codes: Design, . . . , 1989 .
[6] M. Buratti. Recursive constructions for difference matrices and relative difference families , 1998 .
[7] G. Ge,et al. Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.
[8] Fan Chung Graham,et al. Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.
[9] Alexander Schrijver,et al. Group divisible designs with block-size four , 2006, Discret. Math..
[10] G. Ge,et al. Starters and related codes , 2000 .
[11] O. Moreno,et al. Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .
[12] Jianxing Yin,et al. A General Construction for Optimal Cyclic Packing Designs , 2002, J. Comb. Theory, Ser. A.
[13] S. V. Maric,et al. Multirate fiber-optic CDMA: system design and performance analysis , 1998 .
[14] Yanxun Chang,et al. Constructions for optimal optical orthogonal codes , 2003, Discret. Math..
[15] Jawad A. Salehi,et al. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..
[16] Yanxun Chang,et al. Combinatorial Constructions for Optical Orthogonal Codes , 2006 .
[17] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[18] Jawad A. Salehi,et al. Neuromorphic Networks Based on Sparse Optical Orthogonal Codes , 1987, NIPS.
[19] C. Colbourn,et al. Recursive constructions for cyclic block designs , 1984 .
[20] Ryoh Fuji-Hara,et al. Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..
[21] Ryoh Fuji-Hara,et al. Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.
[22] Jawad A. Salehi,et al. Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..
[23] Marshall Hall,et al. Combinatorial Theory, 2nd Edition , 1967 .