Retrieving Product Features and Opinions from Customer Reviews

A new methodology based on language models retrieves product features and opinions from a collection of free-text customer reviews about a product or service. The proposal relies on a language-modeling framework that can be applied to reviews in any domain and language provided with a minimal knowledge source of sentiments or opinions (that is, a minimal seed set of opinion words).

[1]  Falk Scholer,et al.  User performance versus precision measures for simple search tasks , 2006, SIGIR.

[2]  Yue Lu,et al.  Latent aspect rating analysis on review text data: a rating regression approach , 2010, KDD.

[3]  Jian Zhang,et al.  Statistical Translation, Heat Kernels and Expected Distances , 2007, UAI.

[4]  Chun Chen,et al.  Opinion Word Expansion and Target Extraction through Double Propagation , 2011, CL.

[5]  Verónica Pérez-Rosas,et al.  Learning Sentiment Lexicons in Spanish , 2012, LREC.

[6]  Henry Anaya-Sánchez,et al.  Combining Probabilistic Language Models for Aspect-Based Sentiment Retrieval , 2012, ECIR.

[7]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[8]  Meng Wang,et al.  Aspect Ranking: Identifying Important Product Aspects from Online Consumer Reviews , 2011, ACL.

[9]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[10]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[11]  Fermín L. Cruz,et al.  A knowledge-rich approach to feature-based opinion extraction from product reviews , 2010, SMUC '10.

[12]  ChengXiang Zhai,et al.  Axiomatic Analysis of Translation Language Model for Information Retrieval , 2012, ECIR.

[13]  Suk Hwan Lim,et al.  Extracting and Ranking Product Features in Opinion Documents , 2010, COLING.

[14]  Jackie Chi Kit Cheung,et al.  Multi-Document Summarization of Evaluative Text , 2013, EACL.

[15]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[16]  Yue Lu,et al.  Latent aspect rating analysis without aspect keyword supervision , 2011, KDD.

[17]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[18]  Erik Cambria,et al.  SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis , 2012, FLAIRS.

[19]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[20]  Ido Dagan,et al.  A Lexical Alignment Model for Probabilistic Textual Entailment , 2005, MLCW.