Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats

[1]  A. Rozov,et al.  Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents , 2021, Nature Neuroscience.

[2]  H. Grill,et al.  Ghrelin Signaling Affects Feeding Behavior, Metabolism, and Memory through the Vagus Nerve , 2020, Current Biology.

[3]  P. Adelson,et al.  Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior , 2020, Frontiers in Neuroscience.

[4]  M. Kilgard,et al.  Vagus nerve stimulation produces immediate dose-dependent anxiolytic effect in rats. , 2019, Journal of affective disorders.

[5]  Fang Wang,et al.  A-Kinase Anchoring Protein 150 and Protein Kinase A Complex in the Basolateral Amygdala Contributes to Depressive-like Behaviors Induced by Chronic Restraint Stress , 2019, Biological Psychiatry.

[6]  E. Dimitrov,et al.  Activation of enkephalinergic (Enk) interneurons in the central amygdala (CeA) buffers the behavioral effects of persistent pain , 2019, Neurobiology of Disease.

[7]  Fang Wang,et al.  Gephyrin Palmitoylation in Basolateral Amygdala Mediates the Anxiolytic Action of Benzodiazepine , 2019, Biological Psychiatry.

[8]  Robert M Sears,et al.  A brainstem-central amygdala circuit underlies defensive responses to learned threats , 2019, bioRxiv.

[9]  M. Kilgard,et al.  Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats , 2019, Brain Stimulation.

[10]  Fang Wang,et al.  Metformin produces anxiolytic‐like effects in rats by facilitating GABAA receptor trafficking to membrane , 2018, British journal of pharmacology.

[11]  Andreas Hess,et al.  Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect , 2018, Molecular Psychiatry.

[12]  Matthew H. Perkins,et al.  A Neural Circuit for Gut-Induced Reward , 2018, Cell.

[13]  J. Hell,et al.  Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca2+/CaMKII signaling , 2018, The EMBO journal.

[14]  Qing Cheng,et al.  Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses , 2018, Molecular Psychiatry.

[15]  J. Henley,et al.  MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1 , 2018, Scientific Reports.

[16]  Fang Wang,et al.  Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats , 2018, Brain Structure and Function.

[17]  J. Henley,et al.  MEF 2 A regulates mGluR-dependent AMPA receptor trafficking independently of Arc / Arg 3 . 1 , 2018 .

[18]  L. Parsons,et al.  Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype , 2017, Biological Psychiatry.

[19]  Robert M Sears,et al.  Noradrenergic Regulation of Central Amygdala in Aversive Pavlovian-to-Instrumental Transfer , 2017, eNeuro.

[20]  Brandon K. Harvey,et al.  Chemogenetics revealed: DREADD occupancy and activation via converted clozapine , 2017, Science.

[21]  Yiming Zhou,et al.  Lack of β2-AR Increases Anxiety-Like Behaviors and Rewarding Properties of Cocaine , 2017, Front. Behav. Neurosci..

[22]  J. McNamara,et al.  Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex , 2017, Journal of neurochemistry.

[23]  Murray B Stein,et al.  Anxiety , 2017, The Lancet.

[24]  A. Shackman,et al.  Contributions of the Central Extended Amygdala to Fear and Anxiety , 2016, The Journal of Neuroscience.

[25]  F. Carreño,et al.  Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: Comparison with desipramine , 2016, Neuroscience.

[26]  Jian-Guo Chen,et al.  Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala , 2015, British journal of pharmacology.

[27]  K. Tye,et al.  Resolving the neural circuits of anxiety , 2015, Nature Neuroscience.

[28]  K. Tye,et al.  From circuits to behaviour in the amygdala , 2015, Nature.

[29]  F. Wang,et al.  Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors , 2015, Aging cell.

[30]  B. Roth,et al.  DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. , 2015, Annual review of pharmacology and toxicology.

[31]  D. Paré,et al.  Amygdala Microcircuits Controlling Learned Fear , 2014, Neuron.

[32]  C. Winter,et al.  Gut Vagal Afferents Differentially Modulate Innate Anxiety and Learned Fear , 2014, The Journal of Neuroscience.

[33]  Danny G. Winder,et al.  Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala , 2013, Neuropharmacology.

[34]  José M. Pêgo,et al.  Excitotoxic lesions in the central nucleus of the amygdala attenuate stress-induced anxiety behavior , 2013, Front. Behav. Neurosci..

[35]  Charles D. Kopec,et al.  Experience-dependent modification of a central amygdala fear circuit , 2013, Nature Neuroscience.

[36]  M. Brandão,et al.  Central, but not basolateral, amygdala involvement in the anxiolytic-like effects of midazolam in rats in the elevated plus maze , 2012, Journal of psychopharmacology.

[37]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[38]  Antonio Paparelli,et al.  The chemical neuroanatomy of vagus nerve stimulation , 2011, Journal of Chemical Neuroanatomy.

[39]  A. Frazer,et al.  Serotonergic and Noradrenergic Pathways Are Required for the Anxiolytic-like and Antidepressant-like Behavioral Effects of Repeated Vagal Nerve Stimulation in Rats , 2011, Biological Psychiatry.

[40]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[41]  David J. Anderson,et al.  Genetic dissection of an amygdala microcircuit that gates conditioned fear , 2010, Nature.

[42]  Michael B. Stadler,et al.  Encoding of conditioned fear in central amygdala inhibitory circuits , 2010, Nature.

[43]  Katherine E. Prater,et al.  Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. , 2009, Archives of general psychiatry.

[44]  F. Marrosu,et al.  Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. , 2009, The international journal of neuropsychopharmacology.

[45]  Pankaj Sah,et al.  Modulation of SK Channel Trafficking by Beta Adrenoceptors Enhances Excitatory Synaptic Transmission and Plasticity in the Amygdala , 2008, The Journal of Neuroscience.

[46]  A. Frazer,et al.  Induction of c-Fos and ΔFosB Immunoreactivity in Rat Brain by Vagal Nerve Stimulation , 2008, Neuropsychopharmacology.

[47]  Mark S. George,et al.  A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders , 2008, Brain Stimulation.

[48]  G. Drolet,et al.  Enkephalin co‐expression with classic neurotransmitters in the amygdaloid complex of the rat , 2008, The Journal of comparative neurology.

[49]  Roberto Malinow,et al.  Emotion Enhances Learning via Norepinephrine Regulation of AMPA-Receptor Trafficking , 2007, Cell.

[50]  Douglas C. Smith,et al.  Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat , 2006, Brain Research.

[51]  A. Dorr,et al.  Effect of Vagus Nerve Stimulation on Serotonergic and Noradrenergic Transmission , 2006, Journal of Pharmacology and Experimental Therapeutics.

[52]  J. Rosen,et al.  Immediate-early gene expression in the central nucleus of the amygdala is not specific for anxiolytic or anxiogenic drugs , 2006, Neuropharmacology.

[53]  Denis Paré,et al.  Activity-Dependent Synaptic Plasticity in the Central Nucleus of the Amygdala , 2005, The Journal of Neuroscience.

[54]  S. Shelton,et al.  The Role of the Central Nucleus of the Amygdala in Mediating Fear and Anxiety in the Primate , 2004, The Journal of Neuroscience.

[55]  T. Nakagawa,et al.  Involvement of noradrenergic system within the central nucleus of the amygdala in naloxone-precipitated morphine withdrawal-induced conditioned place aversion in rats , 2003, Psychopharmacology.

[56]  Victoria Chapman,et al.  The role of the central nucleus of the amygdala in nociception and aversion , 2003, Neuroreport.

[57]  Z. Nahas,et al.  Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. , 2002, Journal of psychiatric research.

[58]  D. Morilak,et al.  Behavioral reactivity to stress Amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala , 2002, Pharmacology Biochemistry and Behavior.

[59]  D. Bohning,et al.  Feasibility of Vagus Nerve Stimulation–Synchronized Blood Oxygenation Level–Dependent Functional MRI , 2001, Investigative radiology.

[60]  H. Berthoud,et al.  Functional and chemical anatomy of the afferent vagal system , 2000, Autonomic Neuroscience.

[61]  Robert Goodman,et al.  Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study∗ ∗ See accompanying Editorial, in this issue. , 2000, Biological Psychiatry.

[62]  E. V. Van Bockstaele,et al.  Efferent projections of the nucleus of the solitary tract to peri‐locus coeruleus dendrites in rat brain: Evidence for a monosynaptic pathway , 1999, The Journal of comparative neurology.

[63]  Z. Rao,et al.  Evidence of γ‐aminobutyric acidergic control over the catecholaminergic projection from the medulla oblongata to the central nucleus of the amygdala , 1997, The Journal of comparative neurology.

[64]  J. D. McGaugh,et al.  Modulating effects of posttraining epinephrine on memory: Involvement of the amygdala noradrenergic system , 1986, Brain Research.

[65]  J. A. Ricardo,et al.  Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat , 1978, Brain Research.

[66]  J. Price,et al.  Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat , 1978, The Journal of comparative neurology.

[67]  J. Price,et al.  A description of the amygdaloid complex in the rat and cat with observations on intra‐amygdaloid axonal connections , 1978, The Journal of comparative neurology.

[68]  Henry H. Yu The amygdaloid complex in the rat. , 1969 .