Confinement and stability of VH-mode discharges in the DIII-D tokamak

A regime of very high confinement (VH-mode) has been observed in neutral beam-heated deuterium discharges in the DIII-D tokamak with thermal energy confinement times up to [approx]3.6 times that predicted by the ITER-89P L-mode scaling and 2 times that predicted by ELM-free H-mode thermal confinement scalings. This high confinement has led to increased plasma performance, n[sub D] (0)T[sub i](0)[tau][sub E] = 2 [times] 10[sup 20] m[sup [minus]3] keV sec with I[sub p] = 1.6 MA, B[sub T] = 2.1 T, Z[sub eff] [le] 2. Detailed transport analysis shows a correspondence between the large decrease in thermal diffusivity in the region 0.75 [le] [rho] [le] 0.9 and the development of a strong shear in the radial electric field in the same region. This suggests that stabilization of turbulence by sheared E [times] B flow is responsible for the improved confinement in VH-mode. A substantial fraction of the edge plasma entering the second regime of stability may also contribute to the increase in confinement. The duration of the VH-mode phase has been lengthened by feedback controlling the input power to limit plasma beta.

[1]  A. Hyatt,et al.  A simple model for driven islands in tokamaks , 1993 .

[2]  F. Ryter,et al.  Expression for the Thermal H-Mode Energy Confinement Time under ELM-free Conditions , 1993 .

[3]  G. L. Campbell,et al.  Design and operation of the multipulse Thomson scattering diagnostic on DIII‐D (invited) , 1992 .

[4]  L. Lao,et al.  Polarimetry of motional Stark effect and determination of current profiles in DIII-D (invited) , 1992 .

[5]  L. L. Lao,et al.  Very high confinement discharges in DIII‐D after boronization , 1992 .

[6]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[7]  P. Diamond,et al.  Neoclassical poloidal and toroidal rotation in tokamaks , 1991 .

[8]  W. A. Peebles,et al.  Modifications in turbulence and edge electric fields at the L–H transition in the DIII‐D tokamak , 1991 .

[9]  J. T. Scoville,et al.  Locked modes in DIII-D and a method for prevention of the low density mode , 1991 .

[10]  P. Stott,et al.  H-mode energy confinement scaling from the DIII-D and JET tokamaks , 1991 .

[11]  K. Itoh,et al.  Change of Transport at L- and H-Mode Transition , 1990 .

[12]  R. Philipona,et al.  Development and operation of a backward wave oscillator based FIR scattering system for DIII-D , 1990 .

[13]  K. Burrell,et al.  High spatial and temporal resolution visible spectroscopy of the plasma edge in DIII‐D , 1990 .

[14]  E. Doyle,et al.  Far‐infrared heterodyne scattering to study density fluctuations on the DIII‐D tokamak , 1990 .

[15]  Burrell,et al.  Role of edge electric field and poloidal rotation in the L-H transition. , 1990, Physical review letters.

[16]  E. Doyle,et al.  Physics of the L to H transition in the DIII-D tokamak , 1990 .

[17]  R. Yoshino,et al.  H-mode experiments with outer and lower divertors in JT-60 , 1990 .

[18]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[19]  ASDEX-Upgrade team,et al.  The H-Mode of ASDEX , 1989 .

[20]  W. Tang,et al.  Measurements and implications of Zeff profiles on the DIII‐D tokamak , 1988 .

[21]  N. J. Lopes Cardozo,et al.  Large amplitude quasi-stationary MHD modes in JET , 1988 .

[22]  Richard D. Gill,et al.  Magnetic separatrix experiments in JET , 1987 .

[23]  Hong,et al.  Observation of an improved energy-confinement regime in neutral-beam-heated divertor discharges in the DIII-D tokamak. , 1987, Physical review letters.

[24]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[25]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[26]  T. W. Petrie,et al.  Giant sawtooth oscillations in the Doublet III tokamak , 1985 .

[27]  K. Yamazaki,et al.  Ballooning beta limits of Dee- and bean-shaped tokamaks , 1985 .

[28]  C. Bishop,et al.  Ideal MHD ballooning stability in the vicinity of a separatrix , 1984 .

[29]  J. Manickam,et al.  Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak , 1984 .

[30]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[31]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[32]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[33]  J. M. Greene,et al.  β-Effects on collisionless trapped particle instability in non-circular cross-sectioned Tokamaks , 1975 .

[34]  A. H. Glasser,et al.  Stabilization of the collisionless trapped‐particle instability by shaping of the tokamak cross section , 1974 .