Euler schemes and half-space approximation for the simulation of diffusion in a domain

This paper is concerned with the problem of simulation of (Xt )0≤t≤T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N -1 under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.

[1]  James Serrin,et al.  The problem of dirichlet for quasilinear elliptic differential equations with many independent variables , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  J. L. Menaldi,et al.  Stochastic variational inequality for reflected diffusion , 1983 .

[3]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[4]  D. Stroock,et al.  The partial malliavin calculus and its application to non-linear filtering , 1984 .

[5]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[6]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[7]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[8]  P. Cattiaux Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière , 1986 .

[9]  Regularite au bord pour les densites et les densites conditionnelles d'une diffusion reflechie hypoeiliptique , 1987 .

[10]  Yasumasa Saisho,et al.  Stochastic differential equations for multi-dimensional domain with reflecting boundary , 1987 .

[11]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[12]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[13]  D. Lépingle,et al.  Un schéma d'Euler pour équations différentielles stochastiques réfléchies , 1993 .

[14]  Ruth J. Williams,et al.  Symmetric reflected diffusions , 1994 .

[15]  Leszek Słomiński On approximation of solutions of multidimensional SDE's with reflecting boundary conditions , 1994 .

[16]  R. Pettersson Approximations for stochastic differential equations with reflecting convex boundaries , 1995 .

[17]  Dominique Lépingle,et al.  Euler scheme for reflected stochastic differential equations , 1995 .

[18]  Ruth J. Williams Semimartingale reflecting Brownian motions in the orthant , 1995 .

[19]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[20]  Paolo Baldi,et al.  Exact asymptotics for the probability of exit from a domain and applications to simulation , 1995 .

[21]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[22]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[23]  Roger Pettersson,et al.  Penalization schemes for reflecting stochastic differential equations , 1997 .

[24]  Schémas d'Euler pour diffusion tuée. Application aux options barrière , 1998 .

[25]  B. Pacchiarotti,et al.  Numerical Approximation for Functionals of Reflecting Diffusion Processes , 1998, SIAM J. Appl. Math..

[26]  O. Faugeras,et al.  The Inverse EEG and MEG Problems : The Adjoint State Approach I: The Continuous Case , 1999 .

[27]  S. Kanagawa,et al.  Strong Approximation of Reflecting Brownian Motion Using Penalty Method and its Application to Cumputer Simulation , 2000, Monte Carlo Methods Appl..

[28]  P. Baldi,et al.  Pricing Complex Barrier Options with General Features Using Sharp Large Deviation Estimates , 2000 .

[29]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[30]  Erika Hausenblas,et al.  A Numerical Scheme using Excursion Theory for Simulating Stochastic Differential Equations with Reflection and Local Time at a Boundary , 2000, Monte Carlo Methods Appl..

[31]  Emmanuel Gobet,et al.  Efficient schemes for the weak approximation of reflected diffusions , 2001, Monte Carlo Methods Appl..