Euler schemes and half-space approximation for the simulation of diffusion in a domain
暂无分享,去创建一个
[1] James Serrin,et al. The problem of dirichlet for quasilinear elliptic differential equations with many independent variables , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[2] J. L. Menaldi,et al. Stochastic variational inequality for reflected diffusion , 1983 .
[3] P. Lions,et al. Stochastic differential equations with reflecting boundary conditions , 1984 .
[4] D. Stroock,et al. The partial malliavin calculus and its application to non-linear filtering , 1984 .
[5] D. Stroock,et al. Applications of the Malliavin calculus. II , 1985 .
[6] M. Freidlin,et al. Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .
[7] M. Freidlin. Functional Integration And Partial Differential Equations , 1985 .
[8] P. Cattiaux. Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière , 1986 .
[9] Regularite au bord pour les densites et les densites conditionnelles d'une diffusion reflechie hypoeiliptique , 1987 .
[10] Yasumasa Saisho,et al. Stochastic differential equations for multi-dimensional domain with reflecting boundary , 1987 .
[11] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[12] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[13] D. Lépingle,et al. Un schéma d'Euler pour équations différentielles stochastiques réfléchies , 1993 .
[14] Ruth J. Williams,et al. Symmetric reflected diffusions , 1994 .
[15] Leszek Słomiński. On approximation of solutions of multidimensional SDE's with reflecting boundary conditions , 1994 .
[16] R. Pettersson. Approximations for stochastic differential equations with reflecting convex boundaries , 1995 .
[17] Dominique Lépingle,et al. Euler scheme for reflected stochastic differential equations , 1995 .
[18] Ruth J. Williams. Semimartingale reflecting Brownian motions in the orthant , 1995 .
[19] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[20] Paolo Baldi,et al. Exact asymptotics for the probability of exit from a domain and applications to simulation , 1995 .
[21] D. Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996 .
[22] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[23] Roger Pettersson,et al. Penalization schemes for reflecting stochastic differential equations , 1997 .
[24] Schémas d'Euler pour diffusion tuée. Application aux options barrière , 1998 .
[25] B. Pacchiarotti,et al. Numerical Approximation for Functionals of Reflecting Diffusion Processes , 1998, SIAM J. Appl. Math..
[26] O. Faugeras,et al. The Inverse EEG and MEG Problems : The Adjoint State Approach I: The Continuous Case , 1999 .
[27] S. Kanagawa,et al. Strong Approximation of Reflecting Brownian Motion Using Penalty Method and its Application to Cumputer Simulation , 2000, Monte Carlo Methods Appl..
[28] P. Baldi,et al. Pricing Complex Barrier Options with General Features Using Sharp Large Deviation Estimates , 2000 .
[29] E. Gobet. Weak approximation of killed diffusion using Euler schemes , 2000 .
[30] Erika Hausenblas,et al. A Numerical Scheme using Excursion Theory for Simulating Stochastic Differential Equations with Reflection and Local Time at a Boundary , 2000, Monte Carlo Methods Appl..
[31] Emmanuel Gobet,et al. Efficient schemes for the weak approximation of reflected diffusions , 2001, Monte Carlo Methods Appl..