Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells

[1]  P. Stathopulos,et al.  Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease , 2019, International journal of molecular sciences.

[2]  M. Duchen,et al.  Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. , 2019, Trends in pharmacological sciences.

[3]  P. Várnai,et al.  MICU1 Interacts with the D-Ring of the MCU Pore to Control Its Ca2+ Flux and Sensitivity to Ru360. , 2018, Molecular cell.

[4]  T. Pozzan,et al.  Slow activation of fast mitochondrial Ca2+ uptake by cytosolic Ca2+ , 2018, The Journal of Biological Chemistry.

[5]  Joshua D. Meisel,et al.  MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca2+ and Mn2+ , 2018, Proceedings of the National Academy of Sciences.

[6]  Rozbeh Baradaran,et al.  Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters , 2018, Nature.

[7]  N. Fastman,et al.  X-ray and cryo-EM structures of the mitochondrial calcium uniporter , 2018, Nature.

[8]  G. Lander,et al.  Cryo-EM structure of a mitochondrial calcium uniporter , 2018, Science.

[9]  Gary R. Mirams,et al.  Sequential forward and reverse transport of the Na+ Ca2+ exchanger generates Ca2+ oscillations within mitochondria , 2018, Nature Communications.

[10]  Hushan Yang,et al.  MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53 Degradation. , 2017, Antioxidants & redox signaling.

[11]  R. Rizzuto,et al.  MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake , 2018, Cell Death & Differentiation.

[12]  A. Roskowski,et al.  MICU2 Restricts Spatial Crosstalk between InsP3R and MCU Channels by Regulating Threshold and Gain of MICU1-Mediated Inhibition and Activation of MCU. , 2017, Cell reports.

[13]  Yusuke Hirabayashi,et al.  ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons , 2017, Science.

[14]  I. Fearnley,et al.  Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase , 2017, Proceedings of the National Academy of Sciences.

[15]  V. Mootha,et al.  High‐affinity cooperative Ca2+ binding by MICU1–MICU2 serves as an on–off switch for the uniporter , 2017, EMBO reports.

[16]  S. Houser,et al.  The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability , 2017, Nature.

[17]  I. Fearnley,et al.  Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase , 2017, Proceedings of the National Academy of Sciences.

[18]  E. Zito,et al.  Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. , 2017, Journal of molecular biology.

[19]  G. Hajnóczky,et al.  Tissue-Specific Mitochondrial Decoding of Cytoplasmic Ca2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU , 2017, Cell reports.

[20]  J. Faraldo-Gómez,et al.  Atomistic simulations indicate the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability transition pore , 2017, eLife.

[21]  Tullio Pozzan,et al.  Enjoy the Trip: Calcium in Mitochondria Back and Forth. , 2016, Annual review of biochemistry.

[22]  A. Yamada,et al.  Analysis of the structure and function of EMRE in a yeast expression system. , 2016, Biochimica et biophysica acta.

[23]  S. Houser,et al.  MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. , 2016, Cell reports.

[24]  A. Bick Evolutionary Diversity of the Mitochondrial Calcium Uniporter and Its Contribution to Cardiac and Vascular Homeostasis , 2016 .

[25]  Liangliang Kong,et al.  Architecture of the Mitochondrial Calcium Uniporter , 2016, Nature.

[26]  José D. Faraldo-Gómez,et al.  Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger , 2016, Nature Structural &Molecular Biology.

[27]  M. Madesh,et al.  SPG7 is an Essential and Conserved Component of the Mitochondrial Permeability transition Pore , 2016 .

[28]  J. Foskett,et al.  EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. , 2016, Cell reports.

[29]  S. Houser,et al.  SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. , 2015, Molecular cell.

[30]  Julia C. Liu,et al.  Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. , 2015, Journal of molecular and cellular cardiology.

[31]  P. Pinton,et al.  Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. , 2015, Antioxidants & redox signaling.

[32]  K. Belosludtsev,et al.  Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane. , 2015, Biochimica et biophysica acta.

[33]  E. Shoubridge,et al.  CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. , 2015, Cell metabolism.

[34]  K. Laband,et al.  MCUR1 is an essential component of mitochondrial Ca(2+) uptake that regulates cellular metabolism. , 2013, Nature cell biology.

[35]  M. Giladi,et al.  Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation , 2014, Proceedings of the National Academy of Sciences.

[36]  V. Giorgio,et al.  Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition*♦ , 2014, The Journal of Biological Chemistry.

[37]  J. Cheung,et al.  SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress–mediated cell death , 2014, Molecular biology of the cell.

[38]  R. Rizzuto,et al.  MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity , 2014, Molecular cell.

[39]  D. Clapham,et al.  Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1 , 2014, The Journal of general physiology.

[40]  S. Carr,et al.  EMRE Is an Essential Component of the Mitochondrial Calcium Uniporter Complex , 2013, Science.

[41]  S. Moro,et al.  The mitochondrial calcium uniporter is a multimer that can include a dominant‐negative pore‐forming subunit , 2013, The EMBO journal.

[42]  V. Mootha,et al.  MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca²⁺ uniporter. , 2013, Cell metabolism.

[43]  D. Khananshvili,et al.  The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. , 2013, Molecular aspects of medicine.

[44]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[45]  Carthene R. Bazemore-Walker,et al.  In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). , 2013, Journal of proteomics.

[46]  V. Mootha,et al.  MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling , 2013, PloS one.

[47]  L. Galluzzi,et al.  Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition , 2013, Cell cycle.

[48]  T. Simmen,et al.  Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). , 2013, Biochimica et biophysica acta.

[49]  J. Kolesar,et al.  MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism , 2012, Nature Cell Biology.

[50]  J. Kolesar,et al.  MCUR1 is an Essential Component of Mitochondrial Ca2+ Uptake that Regulates Cellular Metabolism , 2012, Nature Cell Biology.

[51]  T. Pozzan,et al.  Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes , 2012, Proceedings of the National Academy of Sciences.

[52]  I. Sekler,et al.  The mitochondrial Na(+)/Ca(2+) exchanger. , 2012, Cell calcium.

[53]  R. Winslow,et al.  Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering , 2012, The Journal of general physiology.

[54]  V. Mootha,et al.  Evolutionary Diversity of the Mitochondrial Calcium Uniporter , 2012, Science.

[55]  V. Pinelis,et al.  Mitochondrial lipid pore in the mechanism of glutamate-induced calcium deregulation of brain neurons , 2012, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[56]  Weizhong Zeng,et al.  Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger , 2012, Science.

[57]  R. Rizzuto,et al.  A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter , 2011, Nature.

[58]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[59]  W. Graier,et al.  Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways , 2011, The Journal of Biological Chemistry.

[60]  Y. Miki,et al.  Recent progress in phospholipase A₂ research: from cells to animals to humans. , 2011, Progress in lipid research.

[61]  J. Farber,et al.  Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. , 2010, The Journal of clinical investigation.

[62]  K. Belosludtsev,et al.  Palmitic Acid Induces the Opening of a Ca2+-Dependent Pore in the Plasma Membrane of Red Blood Cells: The Possible Role of the Pore in Erythrocyte Lysis , 2010, The Journal of Membrane Biology.

[63]  V. Mootha,et al.  MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake , 2010, Nature.

[64]  M. Bortolozzi,et al.  Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. , 2010, Molecular cell.

[65]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[66]  R. Denton,et al.  Regulation of mitochondrial dehydrogenases by calcium ions. , 2009, Biochimica et biophysica acta.

[67]  D. Clapham,et al.  Genome-Wide RNAi Screen Identifies Letm1 as a Mitochondrial Ca2+/H+ Antiporter , 2009, Science.

[68]  P. Distefano,et al.  Genome-Wide RNAi Screen Identifies Letm 1 as a Mitochondrial Ca 2 + / H + Antiporter , 2009 .

[69]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[70]  M. Brand,et al.  UCPs — unlikely calcium porters , 2008, Nature Cell Biology.

[71]  A. Halestrap,et al.  The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition* , 2008, Journal of Biological Chemistry.

[72]  M. Duchen,et al.  Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. , 2008, Cell metabolism.

[73]  R. Rizzuto,et al.  Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. , 2008, Cell calcium.

[74]  Satoshi Matsuoka,et al.  Cytoplasmic Na+‐dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+–Ca2+ exchange , 2008, The Journal of physiology.

[75]  K. Belosludtsev,et al.  Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin a-insensitive pore , 2007, Journal of bioenergetics and biomembranes.

[76]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[77]  L. Andersson,et al.  On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria , 2006, Journal of bioenergetics and biomembranes.

[78]  E. Carafoli,et al.  A historical review of cellular calcium handling, with emphasis on mitochondria , 2005, Biochemistry (Moscow).

[79]  M. Zoratti,et al.  Mitochondrial permeability transitions: how many doors to the house? , 2005, Biochimica et biophysica acta.

[80]  B. Khodorov Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. , 2004, Progress in biophysics and molecular biology.

[81]  I. Sekler,et al.  Lithium-Calcium Exchange Is Mediated by a Distinct Potassium-independent Sodium-Calcium Exchanger* , 2004, Journal of Biological Chemistry.

[82]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[83]  R. Zvyagilskaya,et al.  Mitochondrial Calcium Transport Systems: Properties, Regulation, and Taxonomic Features , 2004, Biochemistry (Moscow).

[84]  K. Belosludtsev,et al.  A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. , 2003, Biochimica et biophysica acta.

[85]  I. Forsythe,et al.  Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses , 2002, The Journal of Neuroscience.

[86]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[87]  P. Louisot,et al.  Palmitic and Stearic Acids Bind Ca2+ with High Affinity and Form Nonspecific Channels in Black-Lipid Membranes. Possible Relation to Ca2+-Activated Mitochondrial Pores , 2001, Journal of bioenergetics and biomembranes.

[88]  S. Sheu,et al.  Identification of a Ryanodine Receptor in Rat Heart Mitochondria* , 2001, The Journal of Biological Chemistry.

[89]  P. M. Sokolove,et al.  Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. , 2001, Archives of biochemistry and biophysics.

[90]  O. Petersen,et al.  Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate‐evoked local cytosolic Ca2+ signals , 1999, The EMBO journal.

[91]  P. Lipton,et al.  Cytosolic Ca2+ Changes during In VitroIschemia in Rat Hippocampal Slices: Major Roles for Glutamate and Na+-Dependent Ca2+ Release from Mitochondria , 1999, The Journal of Neuroscience.

[92]  G. Miotto,et al.  Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. , 1999, Biophysical journal.

[93]  P. Lipton,et al.  Cytosolic Ca 2 1 Changes during In Vitro Ischemia in Rat Hippocampal Slices : Major Roles for Glutamate and Na 1-Dependent Ca 2 1 Release from Mitochondria , 1999 .

[94]  A. Vinogradov,et al.  Slow Ca2+‐induced inactive/active transition of the energy‐dependent Ca2+ transporting system of rat liver mitochondria: clue for Ca2+ influx cooperativity , 1996, FEBS letters.

[95]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[96]  K. Gunter,et al.  Mitochondrial Calcium Uptake from Physiological-type Pulses of Calcium , 1995, The Journal of Biological Chemistry.

[97]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[98]  Antonov Vf,et al.  Lipid pores and stability of cell membranes , 1995 .

[99]  V. F. Antonov,et al.  [Lipid pores and stability of cell membranes]. , 1995, Vestnik Rossiiskoi akademii meditsinskikh nauk.

[100]  J. Mazat,et al.  Mitochondrial calcium spiking: A transduction mechanism based on calcium‐induced permeability transition involved in cell calcium signalling , 1994, FEBS letters.

[101]  V. Teplova,et al.  The Ca2+-induced permeability transition pore is involved in Ca2+-induced mitochondrial oscillations: A study on permeabilised Ehrlich ascites tumour cells , 1994 .

[102]  V. Teplova,et al.  The Ca(2+)-induced permeability transition pore is involved in Ca(2+)-induced mitochondrial oscillations. A study on permeabilised Ehrlich ascites tumour cells. , 1994, Cell Calcium.

[103]  T. Pozzan,et al.  Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. , 1993, Science.

[104]  A. Galat,et al.  Peptidylproline cis-trans-isomerases: immunophilins. , 1993, European journal of biochemistry.

[105]  T. Penttilä,et al.  Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT , 1993, Journal of bioenergetics and biomembranes.

[106]  R. Starling,et al.  Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. , 1992, The American journal of physiology.

[107]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[108]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[109]  H. Kröner Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria. , 1986, Archives of biochemistry and biophysics.

[110]  T. Gunter,et al.  Kinetics of mitochondrial calcium transport. I. Characteristics of the sodium-independent calcium efflux mechanism of liver mitochondria. , 1986, The Journal of biological chemistry.

[111]  T. Gunter,et al.  Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. , 1986, The Journal of biological chemistry.

[112]  T. Sirota,et al.  Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria , 1982, Journal of bioenergetics and biomembranes.

[113]  T. Pozzan,et al.  Kinetics of calcium(2+) ion carrier in rat liver mitochondria , 1979 .

[114]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. , 1979, Archives of biochemistry and biophysics.

[115]  T. Pozzan,et al.  Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. , 1977, Biochemistry.

[116]  E. Carafoli,et al.  The effect of ruthenium red on the uptake and release of Ca 2+ by mitochondria. , 1973, Biochemical and biophysical research communications.

[117]  F. D. Vasington,et al.  Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. , 1962, The Journal of biological chemistry.

[118]  H. DeLuca,et al.  Calcium uptake by rat kidney mitochondria. , 1961, Proceedings of the National Academy of Sciences of the United States of America.