Effective interactions and large deviations in stochastic processes

We discuss the relationships between large deviations in stochastic systems, and “effective interactions” that induce particular rare events. We focus on the nature of these effective interactions in physical systems with many interacting degrees of freedom, which we illustrate by reviewing several recent studies. We describe the connections between effective interactions, large deviations at “level 2.5”, and the theory of optimal control. Finally, we discuss possible physical applications of variational results associated with those theories.

[1]  C. Maes,et al.  The Restriction of the Ising Model to a Layer , 1998, math/9810094.

[2]  A. Gabrielli,et al.  Generation of primordial cosmological perturbations from statistical mechanical models , 2003 .

[3]  L Bertini,et al.  Current fluctuations in stochastic lattice gases. , 2005, Physical review letters.

[4]  L. Bertini,et al.  Non Equilibrium Current Fluctuations in Stochastic Lattice Gases , 2006 .

[5]  Hugo Touchette,et al.  Nonequilibrium microcanonical and canonical ensembles and their equivalence. , 2013, Physical review letters.

[6]  J. P. Garrahan,et al.  First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories , 2008, 0810.5298.

[7]  Thomas Speck,et al.  Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers. , 2011, The Journal of chemical physics.

[8]  David Chandler,et al.  Space-time thermodynamics of the glass transition. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  J P Garrahan,et al.  Dynamical first-order phase transition in kinetically constrained models of glasses. , 2007, Physical review letters.

[12]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[13]  Peter Sollich,et al.  Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems. , 2014, Physical review letters.

[14]  R. Sear Nucleation: theory and applications to protein solutions and colloidal suspensions , 2007 .

[15]  B. Derrida,et al.  Current fluctuations in nonequilibrium diffusive systems: an additivity principle. , 2004, Physical review letters.

[16]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[17]  G. Biroli,et al.  Dynamical Heterogeneities in Glasses, Colloids, and Granular Media , 2011 .

[18]  V. Popkov,et al.  Transition Probabilities and Dynamic Structure Function in the ASEP Conditioned on Strong Flux , 2010, 1011.3913.

[19]  J. P. Garrahan,et al.  Dynamics on the way to forming glass: bubbles in space-time. , 2009, Annual review of physical chemistry.

[20]  Salvatore Torquato,et al.  Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings. , 2010, Physical review letters.

[21]  B Derrida,et al.  Distribution of current in nonequilibrium diffusive systems and phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Vivien Lecomte,et al.  A numerical approach to large deviations in continuous time , 2007 .

[23]  R M L Evans Rules for transition rates in nonequilibrium steady states. , 2004, Physical review letters.

[24]  J. P. Garrahan,et al.  Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Kyomin Jung Markov Process , 2021, Encyclopedia of Machine Learning and Data Mining.

[26]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[27]  Pedro L. Garrido,et al.  Thermodynamics of Currents in Nonequilibrium Diffusive Systems: Theory and Simulation , 2013, 1312.1246.

[28]  J. Lebowitz,et al.  A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics , 1998, cond-mat/9811220.

[29]  V. Lecomte,et al.  Thermodynamic Formalism for Systems with Markov Dynamics , 2007 .

[30]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  C. Landim,et al.  Fluctuations in stationary nonequilibrium states of irreversible processes. , 2001, Physical review letters.

[32]  Eric Vanden-Eijnden,et al.  Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide. , 2005, The Journal of chemical physics.

[33]  J. P. Garrahan,et al.  Finite-temperature critical point of a glass transition , 2010, Proceedings of the National Academy of Sciences.

[34]  Jorge Kurchan,et al.  Probing rare physical trajectories with Lyapunov weighted dynamics , 2007 .

[35]  Robert L. Jack,et al.  Large deviations of the dynamical activity in the East model: analysing structure in biased trajectories , 2013, 1308.6124.

[36]  Peter Sollich,et al.  Glassy dynamics of kinetically constrained models , 2002, cond-mat/0210382.

[37]  J. L. Lebowitz,et al.  Exact Large Deviation Function in the Asymmetric Exclusion Process , 1998 .

[38]  G. Crooks,et al.  Efficient transition path sampling for nonequilibrium stochastic dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Michael Chertkov,et al.  Stochastic Optimal Control as Non-equilibrium Statistical Mechanics: Calculus of Variations over Density and Current , 2013, ArXiv.

[40]  W. E,et al.  Finite temperature string method for the study of rare events. , 2002, Journal of Physical Chemistry B.

[41]  Jorge Kurchan,et al.  Order in Extremal Trajectories , 2009, 0907.1807.

[42]  R. Evans,et al.  Comment on `Detailed balance has a counterpart in non-equilibrium steady states' , 2004, 0901.4879.

[43]  A. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.

[44]  Takahiro Nemoto,et al.  Computation of large deviation statistics via iterative measurement-and-feedback procedure. , 2013, Physical review letters.

[45]  Wendell H. Fleming Stochastic Control and Large Deviations , 1992, 25th Anniversary of INRIA.

[46]  J. P. Garrahan,et al.  Metastable states and space-time phase transitions in a spin-glass model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[48]  M. Chertkov,et al.  Non-Equilibrium Thermodynamics and Topology of Currents , 2009, 0907.3481.

[49]  Jeffrey K Weber,et al.  Emergence of glass-like behavior in Markov state models of protein folding dynamics. , 2013, Journal of the American Chemical Society.

[50]  Alan D. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations , 1991 .

[51]  C. Schütte,et al.  Efficient rare event simulation by optimal nonequilibrium forcing , 2012, 1208.3232.

[52]  Peter Sollich,et al.  Large deviations and ensembles of trajectories in stochastic models , 2009, 0911.0211.

[53]  Michael Meyer-Hermann,et al.  Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[55]  D. Frenkel,et al.  Simulating rare events in equilibrium or nonequilibrium stochastic systems. , 2005, The Journal of chemical physics.

[56]  C. Maes,et al.  Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states , 2007, 0705.2344.

[57]  Eric Vanden-Eijnden,et al.  Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement , 2014, ArXiv.

[58]  Jorge Kurchan,et al.  Direct evaluation of large-deviation functions. , 2005, Physical review letters.

[59]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[60]  L. Bertini,et al.  Quantitative analysis of the Clausius inequality , 2015 .

[61]  J. P. Garrahan,et al.  Thermodynamics of quantum jump trajectories. , 2009, Physical review letters.

[62]  J. P. Garrahan,et al.  Kinetically Constrained Models , 2010, 1009.6113.

[63]  Jeffrey K Weber,et al.  Dynamical phase transitions reveal amyloid-like states on protein folding landscapes. , 2014, Biophysical journal.

[64]  J. P. Garrahan,et al.  Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers , 2009, Science.

[65]  C. Maes,et al.  Steady state statistics of driven diffusions , 2007, 0708.0489.