Max- Relative Entropy of Entanglement, alias Log Robustness

Properties of the max-relative entropy of entanglement, defined in Ref. 10, are investigated, and its significance as an upper bound to the one-shot rate for perfect entanglement dilution, under a particular class of quantum operations, is discussed. It is shown that it is in fact equal to another known entanglement monotone, namely the log robustness, defined in Ref. 7. It is known that the latter is not asymptotically continuous and it is not known whether it is weakly additive. However, by suitably modifying the max-relative entropy of entanglement we obtain a quantity which is seen to satisfy both these properties. In fact, the modified quantity is shown to be equal to the regularized relative entropy of entanglement.

[1]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[2]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[3]  Renato Renner,et al.  Trade-Offs in Information-Theoretic Multi-party One-Way Key Agreement , 2007, ICITS.

[4]  Masahito Hayashi,et al.  Quantum Information: An Introduction , 2010 .

[5]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[6]  G. Vidal On the characterization of entanglement , 1998 .

[7]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[8]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[9]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[10]  Fernando G. S. L. Brandão,et al.  A Reversible Theory of Entanglement and its Relation to the Second Law , 2007, 0710.5827.

[11]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[12]  E. Rains Entanglement purification via separable superoperators , 1997, quant-ph/9707002.

[13]  Nilanjana Datta,et al.  Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[15]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[16]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[17]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[18]  Fernando G. S. L. Brandao Entanglement activation and the robustness of quantum correlations , 2007 .

[19]  Renato Renner,et al.  The Single-Serving Channel Capacity , 2006, 2006 IEEE International Symposium on Information Theory.

[20]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[21]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[22]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[23]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[24]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[25]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[26]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[27]  Renato Renner,et al.  Simple and Tight Bounds for Information Reconciliation and Privacy Amplification , 2005, ASIACRYPT.

[28]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.