A census of metals and baryons in stars in the local universe

We combine stellar metallicity and stellar mass estimates for a large sample of galaxies drawn from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) spanning wide ranges in physical properties, in order to derive an inventory of the total mass of metals and baryons locked up in stars in the local Universe. Physical parameter estimates are derived from galaxy spectra with high signal-to-noise ratio (S/N) (of at least 20). Co-added spectra of galaxies with similar velocity dispersions, absolute r-band magnitudes and 4000-A break values are used for those regions of parameter space where individual spectra have lower S/N. We estimate the total density of metals ρ z and of baryons ρ * in stars and, from these two quantities, we obtain a mass-and volume-averaged stellar metallicity of = 1.04 + 0.14 Z z , i.e. consistent with solar. We also study how metals are distributed in galaxies according to different properties, such as mass, morphology, mass- and light-weighted age, and we then compare these distributions with the corresponding distributions of stellar mass. We find that the bulk of metals locked up in stars in the local Universe reside in massive, bulge-dominated galaxies, with red colours and high 4000-A break values corresponding to old stellar populations. Bulge-dominated and disc-dominated galaxies contribute similar amounts to the total stellar mass density, but have different fractional contributions to the mass density of metals in stars, in agreement with the mass-metallicity relation. Bulge-dominated galaxies contain roughly 40 per cent of the total amount of metals in stars, while disc-dominated galaxies less than 25 per cent. Finally, at a given galaxy stellar mass, we define two characteristic ages as the median of the distributions of mass and metals as a function of age. These characteristic ages decrease progressively from high-mass to low-mass galaxies, consistent with the high formation epochs of stars in massive galaxies.

[1]  E. Bell,et al.  Star Formation and the Growth of Stellar Mass , 2007, 0704.3077.

[2]  S. Driver,et al.  The Millennium Galaxy Catalogue: the B-band attenuation of bulge and disc light and the implied cosmic dust and stellar mass densities , 2007, 0704.2140.

[3]  A. Heavens,et al.  Recovering galaxy star formation and metallicity histories from spectra using VESPA , 2007, 0704.0941.

[4]  Iap,et al.  The missing metals problem – III. How many metals are expelled from galaxies? , 2007, astro-ph/0703509.

[5]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[6]  S. Driver,et al.  The Millennium Galaxy Catalogue: The Luminosity Functions of Bulges and Disks and Their Implied Stellar Mass Densities , 2007, astro-ph/0701728.

[7]  P. Thomas,et al.  The recycling of gas and metals in galaxy formation: predictions of a dynamical feedback model , 2007, astro-ph/0701407.

[8]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[9]  P. Harding,et al.  Hδ in the Integrated Light of Galaxies: What Are We Actually Measuring? , 2006, Proceedings of the International Astronomical Union.

[10]  J. P. Torres-Papaqui,et al.  Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies , 2006, astro-ph/0610815.

[11]  F. Fontanot,et al.  The morgana model for the rise of galaxies and active nuclei , 2006, astro-ph/0610805.

[12]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[13]  A. Heavens,et al.  The star formation histories of galaxies in the sloan digital sky survey , 2006, astro-ph/0608531.

[14]  Romeel Dav'eBenjamin D. Oppenheimer The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.

[15]  D. York,et al.  Metal-rich damped/subdamped Lyman α quasar absorbers at z < 1 , 2006, astro-ph/0607561.

[16]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[17]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[18]  P. P. van der Werf,et al.  Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density , 2006, astro-ph/0606536.

[19]  Porto,et al.  Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.

[20]  M. Fukugita,et al.  The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light , 2006, astro-ph/0603257.

[21]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[22]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[23]  P. Salucci,et al.  New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation , 2006, astro-ph/0601577.

[24]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[25]  H. Rix,et al.  Detecting Faint Galaxies by Stacking at 24 μm , 2005, astro-ph/0512203.

[26]  France,et al.  Where Are the Missing Cosmic Metals? , 2005, astro-ph/0510525.

[27]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[28]  Eső,et al.  The missing metal problem — I. How many metals are in submillimetre galaxies? , 2005, astro-ph/0509005.

[29]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[30]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[31]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[32]  Cambridge,et al.  A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2⋆ , 2005, astro-ph/0507353.

[33]  I. Paris,et al.  STECKMAP: STEllar Content and Kinematics from high resolution galactic spectra via Maximum A Posteriori , 2005, astro-ph/0507002.

[34]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[35]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[36]  C. Maraston,et al.  The sensitivity of Lick indices to abundance variations , 2005, astro-ph/0504574.

[37]  C. Conselice,et al.  The Mass Assembly Histories of Galaxies of Various Morphologies in the GOODS Fields , 2005, astro-ph/0502204.

[38]  I. Hook,et al.  Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass , 2004, astro-ph/0411775.

[39]  L. Kewley,et al.  Emission-line abundances of absorption-selected galaxies at z < 0.5 , 2004, astro-ph/0411767.

[40]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[41]  Karl Glazebrook,et al.  Cosmic Star Formation History to z = 1 from a Narrow Emission Line-selected Tunable-Filter Survey , 2004, astro-ph/0408516.

[42]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[43]  F. Bresolin,et al.  Abundances of Metal-rich H II Regions in M51 , 2004, astro-ph/0407065.

[44]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[45]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[46]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[47]  C. Maraston,et al.  Higher‐order Balmer line indices in α/Fe‐enhanced stellar population models , 2004, astro-ph/0404511.

[48]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[49]  A. Heavens,et al.  Baryonic conversion tree: the global assembly of stars and dark matter in galaxies from the Sloan Digital Sky Survey , 2004, astro-ph/0403294.

[50]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey. I. Introduction to the Survey, Catalogs, and Composite Spectra , 2004, astro-ph/0402436.

[51]  F. Matteucci,et al.  Erratum: Cosmic metal production and the mean metallicity of the Universe , 2004, astro-ph/0401462.

[52]  J. Holtzman,et al.  Structure of Disk-dominated Galaxies. II. Color Gradients and Stellar Population Models , 2004, astro-ph/0401437.

[53]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[54]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[55]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[56]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[57]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[58]  A. Szalay,et al.  The Star Formation History of Galaxies Measured from Individual Pixels. I. The Hubble Deep Field North , 2003, astro-ph/0307470.

[59]  C. Carollo,et al.  The Metallicities of Star-forming Galaxies at Intermediate Redshifts 0.47 < z < 0.92 , 2003, astro-ph/0307300.

[60]  P. P. van der Werf,et al.  The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z = 0 to z = 3 , 2003, astro-ph/0307149.

[61]  Cambridge,et al.  A homogeneous sample of sub-damped Lyman α systems – II. Statistical, kinematic and chemical properties , 2003, astro-ph/0307050.

[62]  R. Bender,et al.  Spatially resolved spectroscopy of Coma cluster early-type galaxies III. The stellar population gradients ? , 2003, astro-ph/0306219.

[63]  Puragra Guhathakurta,et al.  The DEEP2 Galaxy Redshift Survey: Spectral Classification of Galaxies at z ∼ 1 , 2003, astro-ph/0305587.

[64]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[65]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[66]  Puragra Guhathakurta,et al.  Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II , 2003 .

[67]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[68]  R. Nichol,et al.  The Sloan Digital Sky Survey: The Cosmic Spectrum and Star Formation History , 2003, astro-ph/0301005.

[69]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[70]  L. Dunne,et al.  A Census of Metals at High and Low Redshift and the Connection Between Submillimetre Sources and Spheroid Formation , 2002, astro-ph/0210260.

[71]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[72]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[73]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[74]  J. Dunlop,et al.  Deep radio imaging of the SCUBA 8-mJy survey fields: submillimetre source identifications and redshift distribution , 2002, astro-ph/0206432.

[75]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[76]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[77]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum , 2001, astro-ph/0110676.

[78]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[79]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[80]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[81]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[82]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.

[83]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[84]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[85]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[86]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[87]  O. Lahav,et al.  Massive lossless data compression and multiple parameter estimation from galaxy spectra , 1999, astro-ph/9911102.

[88]  Lennox L. Cowie,et al.  Evidence for a Gradual Decline in the Universal Rest-Frame Ultraviolet Luminosity Density for z < 1 , 1999, astro-ph/9904345.

[89]  G. Worthey,et al.  The Distribution of Heavy Elements in Spiral and Elliptical Galaxies , 1999, astro-ph/9904017.

[90]  S. M. Fall,et al.  Cosmic Histories of Stars, Gas, Heavy Elements, and Dust in Galaxies , 1998, astro-ph/9812182.

[91]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[92]  D. Zaritsky,et al.  Chemical Properties of Star-forming Emission-Line Galaxies at z=0.1-0.5 , 1998, astro-ph/9808081.

[93]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[94]  P. Salucci,et al.  The Baryonic Mass Function of Spiral Galaxies. Clues to Galaxy Formation and to the Nature of Damped Lyman Alpha Clouds , 1998 .

[95]  S. Phillipps,et al.  Global chemical evolution — II. The mean metal abundance of the Universe , 1997 .

[96]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[97]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[98]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[99]  A. Szalay,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997, astro-ph/9706255.

[100]  Linda J. Smith,et al.  The Metallicity of High-Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyα Systems from z = 0.7 to 3.4 , 1997, astro-ph/9704102.

[101]  C. Baugh,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[102]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[103]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[104]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[105]  Linda J. Smith,et al.  Metal Enrichment, Dust, and Star Formation in Galaxies at High Redshifts. III. Zn and CR Abundances for 17 Damped Lyman-Alpha Systems , 1994 .

[106]  K. Lanzetta,et al.  EVOLUTION OF THE GASEOUS CONTENT OF THE UNIVERSE , 1993 .

[107]  S. Arnouts,et al.  The fabulous destiny of galaxies : bridging past and present , 2006 .

[108]  J. Dunlop,et al.  MASS OF GALAXIES AT LOW AND HIGH REDSHIFT , 2003 .

[109]  E. Salpeter The Luminosity function and stellar evolution , 1955 .