The middle-scale asymptotics of Wishart matrices

We study the behavior of a real $p$-dimensional Wishart random matrix with $n$ degrees of freedom when $n,p\rightarrow\infty$ but $p/n\rightarrow 0$. We establish the existence of phase transitions when $p$ grows at the order $n^{(K+1)/(K+3)}$ for every $k\in\mathbb{N}$, and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the G-transform of a distribution, which is closely related to the characteristic function. We also derive an extension of the $t$-distribution to the real symmetric matrices, which naturally appears as the conjugate distribution to the Wishart under a G-transformation, and show its empirical spectral distribution obeys a semicircle law when $p/n\rightarrow 0$. Finally, we discuss how the phase transitions of the Wishart distribution might originate from changes in rates of convergence of symmetric $t$ statistics.

[1]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[2]  Danning Li,et al.  Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations , 2013, 1309.3882.

[3]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[5]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[6]  Sho Matsumoto General Moments of the Inverse Real Wishart Distribution and Orthogonal Weingarten Functions , 2010, 1004.4717.

[7]  M. L. Mehta,et al.  ON THE STATISTICAL PROPERTIES OF THE LEVEL-SPACINGS IN NUCLEAR SPECTRA , 1960 .

[8]  M. Gaudin Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .

[9]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[10]  Mohsen Pourahmadi,et al.  High-Dimensional Covariance Estimation , 2013 .

[11]  Miklós Z. Rácz,et al.  A Smooth Transition from Wishart to GOE , 2016, 1611.05838.

[12]  M. Bartlett XX.—On the Theory of Statistical Regression. , 1934 .

[13]  Sébastien Bubeck,et al.  Entropic CLT and phase transition in high-dimensional Wishart matrices , 2015, ArXiv.

[14]  Gérard Letac,et al.  All Invariant Moments of the Wishart Distribution , 2004 .

[15]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[16]  Sébastien Bubeck,et al.  Testing for high‐dimensional geometry in random graphs , 2014, Random Struct. Algorithms.

[17]  C. Porter,et al.  STATISTICAL PROPERTIES OF ATOMIC AND NUCLEAR SPECTRA , 1960 .

[18]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[19]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[20]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[21]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .