Interpolation functions in the immersed boundary and finite element methods

In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the existing interpolation functions such as the discretized Dirac delta function and the reproducing kernel interpolation function. The finite element shape function is easy to implement and it naturally satisfies the reproducing condition. They are interpolated through only one element layer instead of smearing to several elements. A pressure jump is clearly captured at the fluid–solid interface. Two example problems are studied and results are compared with other numerical methods. A convergence test is thoroughly conducted for the independent fluid and solid meshes in a fluid–structure interaction system. The required mesh size ratio between the fluid and solid domains is obtained.

[1]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[2]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[3]  Charles S. Peskin,et al.  A vortex-grid method for blood flow through heart valves , 1980 .

[4]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[5]  Wing Kam Liu,et al.  Computer implementation aspects for fluid-structure interaction problems , 1982 .

[6]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[7]  C S Peskin,et al.  Computer-assisted design of pivoting disc prosthetic mitral valves. , 1983, The Journal of thoracic and cardiovascular surgery.

[8]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[9]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua , 1988 .

[10]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[11]  C S Peskin,et al.  Cardiac fluid dynamics. , 1992, Critical reviews in biomedical engineering.

[12]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[13]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[14]  C. Peskin,et al.  Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. , 1994, The American journal of physiology.

[15]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[16]  Wing Kam Liu,et al.  Wavelet and multiple scale reproducing kernel methods , 1995 .

[17]  Tayfun E. Tezduyar,et al.  Numerical Simulation Of Fluid-Particle Interactions , 1995 .

[18]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[19]  Ted Belytschko,et al.  Advances in multiple scale kernel particle methods , 1996 .

[20]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[21]  Tayfun E. Tezduyar,et al.  Fluid-particle simulations reaching 100 particles , 1997 .

[22]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[23]  H. Othmer,et al.  Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology , 1997 .

[24]  K. Bube,et al.  The Immersed Interface Method for Nonlinear Differential Equations with Discontinuous Coefficients and Singular Sources , 1998 .

[25]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[26]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part I—formulation and theory , 1999 .

[27]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[28]  Andreas Wiegmann,et al.  The Explicit-Jump Immersed Interface Method: Finite Difference Methods for PDEs with Piecewise Smooth Solutions , 2000, SIAM J. Numer. Anal..

[29]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[30]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[31]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[32]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[33]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[34]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[35]  James P. Keener,et al.  Immersed Interface Methods for Neumann and Related Problems in Two and Three Dimensions , 2000, SIAM J. Sci. Comput..

[36]  Lucy T. Zhang,et al.  A Parallelized Meshfree Method with Boundary Enrichment for Large-Scale CFD , 2002 .

[37]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[38]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[39]  Wing Kam Liu,et al.  Modelling and simulation of fluid structure interaction by meshfree and FEM , 2003 .

[40]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[41]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[42]  D. Boffi,et al.  The immersed boundary method: a finite element approach , 2003 .

[43]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[44]  Wing Kam Liu Immersed Finite Element Method and Applications to Biological Systems: 1970’s and Beyond , 2004 .

[45]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[46]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[47]  Lucy T. Zhang,et al.  Stent modeling using immersed finite element method , 2006 .

[48]  Thomas Dunne,et al.  An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation , 2006 .

[49]  Yaling Liu,et al.  Rheology of red blood cell aggregation by computer simulation , 2006, J. Comput. Phys..

[50]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[51]  Luca Heltai,et al.  On the CFL condition for the finite element immersed boundary method , 2007 .

[52]  Full Eulerian finite difference computation for fluid-structure coupling problem , 2008 .

[53]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..