A toolbox for robust PID controller tuning using convex optimization

A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric while the software is compatible with the output data of the identification toolbox of Matlab. Three illustrative examples exhibit convenience of working with the developed commands.

[1]  Harpreet Singh,et al.  Robust optimization-based multi-loop PID controller tuning: A new tool and an industrial example , 2009 .

[2]  J.J.E. Oviedo,et al.  Robust advanced PID control (RaPID): PID tuning based on engineering specifications , 2006, IEEE Control Systems.

[3]  Alireza Karimi,et al.  Robust Controller Design by Linear Programming with Application to a Double-Axis Positioning System , 2007 .

[4]  P. McLellan,et al.  Robust Multiloop PID Controller Design: A Successive Semidefinite Programming Approach , 1999 .

[5]  Alireza Karimi,et al.  H∞ controller design for spectral MIMO models by convex optimization , 2009, 2009 European Control Conference (ECC).

[6]  Alireza Karimi,et al.  Fixed-order H∞ controller design for nonparametric models by convex optimization , 2010, Autom..

[7]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[8]  Alireza Karimi,et al.  Gain-scheduled controller design by linear programming , 2007, 2007 European Control Conference (ECC).

[9]  N. Bajcinca,et al.  RobSin: a new tool for robust design of PID and three-term controllers based on singular frequencies , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[10]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[11]  Rogelio Lozano,et al.  Adaptive Control: Algorithms, Analysis and Applications , 2011 .

[12]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[13]  Tore Hägglund,et al.  A Software Tool for Robust PID Design , 2008 .

[14]  Alireza Karimi,et al.  H∞ Controller design for spectral MIMO models by convex optimization☆ , 2010 .

[15]  Fernando Morilla,et al.  Sintolab: the REPSOL-YPF PID tuning tool , 2002 .

[16]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .