Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients

Based on the multi-symplecticity of the Schrodinger equations with variable coefficients, we give a multisymplectic numerical scheme, and investigate some conservative properties and error estimation of it. We show that the scheme satisfies discrete normal conservation law corresponding to one possessed by the original equation, and propose global energy transit formulae in temporal direction. We also discuss some discrete properties corresponding to energy conservation laws of the original equations. In numerical experiments, the comparisons with modified Goldberg scheme and Modified Crank-Nicolson scheme are given to illustrate some properties of the multi-symplectic scheme in the numerical implementation, and the global energy transit is monitored due to the scheme does not preserve energy conservation law. Our numerical experiments show the match between theoretical and corresponding numerical results.

[1]  J. I. Ramos,et al.  Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media , 2002, Appl. Math. Comput..

[2]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[3]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[4]  Mark J. Ablowitz,et al.  Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .

[5]  C. M. Schober,et al.  Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .

[6]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[7]  J. M. Sanz-Serna,et al.  A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .

[8]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[9]  Mark J. Ablowitz,et al.  HAMILTONIAN INTEGRATORS FOR THE NONLINEAR SCHROEDINGER EQUATION , 1994 .

[10]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[11]  Manuel Mañas,et al.  Darboux transformations for the nonlinear Schrödinger equations , 1996 .

[12]  Radford M. Neal An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.

[13]  Jerrold E. Marsden,et al.  Multisymplectic geometry, covariant Hamiltonians, and water waves , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Z. Rudnick Quantum Chaos? , 2007 .

[15]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Víctor M. Pérez-García,et al.  Symplectic methods for the nonlinear Schrödinger equation , 1996 .

[17]  Sergey I. Vinitsky,et al.  A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation , 1999 .

[18]  Sergey I. Vinitsky,et al.  Magnus-factorized method for numerical solving the time-dependent Schrödinger equation , 2000 .

[19]  Jialin Hong,et al.  Multisymplecticity of the centred box discretization for hamiltonian PDEs with m >= 2 space dimensions , 2002, Appl. Math. Lett..

[20]  Stephen K. Gray,et al.  Optimal stability polynomials for splitting methods, with application to the time-dependent Schro¨dinger equation , 1997 .

[21]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[22]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[23]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[24]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[25]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[26]  Symplectic integrators for discrete nonlinear Schrödinger systems , 2001 .

[27]  Jingbo Chen New schemes for the nonlinear Shrödinger equation , 2001, Appl. Math. Comput..

[28]  Ying Liu,et al.  Multisymplecticity of the centred box scheme for a class of hamiltonian PDEs and an application to quasi-periodically solitary waves , 2004 .

[29]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[30]  Xu-Guang Hu LAGUERRE SCHEME : ANOTHER MEMBER FOR PROPAGATING THE TIME-DEPENDENT SCHRODINGER EQUATION , 1999 .

[31]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[32]  Ying Liu,et al.  A novel numerical approach to simulating nonlinear Schro"dinger equations with varying coefficients , 2003, Appl. Math. Lett..

[33]  Salvador Jiménez,et al.  Derivation of the discrete conservation laws for a family of finite difference schemes , 1994 .

[34]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[35]  Judah L. Schwartz,et al.  Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .

[36]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[37]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[38]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[39]  C. Budd,et al.  Geometric integration and its applications , 2003 .

[40]  Eitan Abraham,et al.  Two‐dimensional time‐dependent quantum‐mechanical scattering event , 1984 .

[41]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[42]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[43]  Jerrold E. Marsden,et al.  Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .

[44]  David Potter Computational physics , 1973 .

[45]  Sergio Blanes,et al.  Splitting methods for the time-dependent Schrödinger equation , 2000 .

[46]  T. D. Lee,et al.  Difference equations and conservation laws , 1987 .

[47]  Lev Davidovich Landau,et al.  CHAPTER I – THE BASIC CONCEPTS OF QUANTUM MECHANICS , 1977 .