Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
暂无分享,去创建一个
Ying Liu | Antonella Zanna | Jialin Hong | Hans Munthe-Kaas | H. Munthe-Kaas | A. Zanna | Y. Liu | Jialin Hong
[1] J. I. Ramos,et al. Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media , 2002, Appl. Math. Comput..
[2] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[3] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[4] Mark J. Ablowitz,et al. Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .
[5] C. M. Schober,et al. Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .
[6] Catherine Sulem,et al. The nonlinear Schrödinger equation , 2012 .
[7] J. M. Sanz-Serna,et al. A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .
[8] J. G. Verwer,et al. Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .
[9] Mark J. Ablowitz,et al. HAMILTONIAN INTEGRATORS FOR THE NONLINEAR SCHROEDINGER EQUATION , 1994 .
[10] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[11] Manuel Mañas,et al. Darboux transformations for the nonlinear Schrödinger equations , 1996 .
[12] Radford M. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.
[13] Jerrold E. Marsden,et al. Multisymplectic geometry, covariant Hamiltonians, and water waves , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Z. Rudnick. Quantum Chaos? , 2007 .
[15] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Víctor M. Pérez-García,et al. Symplectic methods for the nonlinear Schrödinger equation , 1996 .
[17] Sergey I. Vinitsky,et al. A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation , 1999 .
[18] Sergey I. Vinitsky,et al. Magnus-factorized method for numerical solving the time-dependent Schrödinger equation , 2000 .
[19] Jialin Hong,et al. Multisymplecticity of the centred box discretization for hamiltonian PDEs with m >= 2 space dimensions , 2002, Appl. Math. Lett..
[20] Stephen K. Gray,et al. Optimal stability polynomials for splitting methods, with application to the time-dependent Schro¨dinger equation , 1997 .
[21] D. Manolopoulos,et al. Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .
[22] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[23] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[24] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[25] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[26] Symplectic integrators for discrete nonlinear Schrödinger systems , 2001 .
[27] Jingbo Chen. New schemes for the nonlinear Shrödinger equation , 2001, Appl. Math. Comput..
[28] Ying Liu,et al. Multisymplecticity of the centred box scheme for a class of hamiltonian PDEs and an application to quasi-periodically solitary waves , 2004 .
[29] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[30] Xu-Guang Hu. LAGUERRE SCHEME : ANOTHER MEMBER FOR PROPAGATING THE TIME-DEPENDENT SCHRODINGER EQUATION , 1999 .
[31] C. Sulem,et al. The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .
[32] Ying Liu,et al. A novel numerical approach to simulating nonlinear Schro"dinger equations with varying coefficients , 2003, Appl. Math. Lett..
[33] Salvador Jiménez,et al. Derivation of the discrete conservation laws for a family of finite difference schemes , 1994 .
[34] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[35] Judah L. Schwartz,et al. Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .
[36] Hasegawa,et al. Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.
[37] YeYaojun. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .
[38] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[39] C. Budd,et al. Geometric integration and its applications , 2003 .
[40] Eitan Abraham,et al. Two‐dimensional time‐dependent quantum‐mechanical scattering event , 1984 .
[41] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[42] Ben M. Herbst,et al. Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .
[43] Jerrold E. Marsden,et al. Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .
[44] David Potter. Computational physics , 1973 .
[45] Sergio Blanes,et al. Splitting methods for the time-dependent Schrödinger equation , 2000 .
[46] T. D. Lee,et al. Difference equations and conservation laws , 1987 .
[47] Lev Davidovich Landau,et al. CHAPTER I – THE BASIC CONCEPTS OF QUANTUM MECHANICS , 1977 .