Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.

Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.

[1]  G. Duscher,et al.  Pulsed Laser Deposition of Photoresponsive Two‐Dimensional GaSe Nanosheet Networks , 2014 .

[2]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[3]  M. Chi,et al.  Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse , 2014, Scientific Reports.

[4]  Z. Gong,et al.  Anomalously robust valley polarization and valley coherence in bilayer WS2 , 2014, Proceedings of the National Academy of Sciences.

[5]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[6]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[7]  Gunuk Wang,et al.  Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. , 2014, Angewandte Chemie.

[8]  K. Novoselov,et al.  Commensurate–incommensurate transition in graphene on hexagonal boron nitride , 2014, Nature Physics.

[9]  Kai Yan,et al.  Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. , 2014, ACS nano.

[10]  Aaron M. Jones,et al.  Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 , 2013, Nature Physics.

[11]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[12]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[13]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[14]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[15]  M. Potemski,et al.  Cloning of Dirac fermions in graphene superlattices , 2013, Nature.

[16]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[17]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[18]  Chun Li,et al.  Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. , 2012, ACS nano.

[19]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[20]  J. Long,et al.  A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation , 2012, Science.

[21]  R. Bistritzer,et al.  Materials science: Graphene moiré mystery solved? , 2011, Nature.

[22]  A. Reina,et al.  Single-layer behavior and its breakdown in twisted graphene layers. , 2010, Physical review letters.

[23]  E. Mele,et al.  Commensuration and interlayer coherence in twisted bilayer graphene , 2010, 1001.5190.

[24]  Sangeeta Sharma,et al.  Electronic structure of turbostratic graphene , 2009, 0910.5811.

[25]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[26]  K. Allakhverdiev,et al.  Effective nonlinear GaSe crystal. Optical properties and applications , 2009 .

[27]  M. Stamate,et al.  Photoelectric properties of Bi2O3∕GaSe heterojunctions , 2009 .

[28]  Robert L. Johnson,et al.  Electronic band structure of GaSe(0001): Angle-resolved photoemission and ab initio theory , 2003 .

[29]  K. Kusakabe,et al.  Magnetic nanographite , 2002, cond-mat/0212391.

[30]  Wei Shi,et al.  Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. , 2002, Optics letters.

[31]  A. Chevy,et al.  Crystal structure and interatomic distances in GaSe , 1975 .