Tetrisation of triangular meshes and its application in shape blending

The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online.

[1]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[2]  William V. Baxter,et al.  N‐way morphing for 2D animation , 2009, Comput. Animat. Virtual Worlds.

[3]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[4]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[5]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[6]  Gengdai Liu,et al.  Probe-Type Deformers , 2015 .

[7]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[8]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[9]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[10]  N. Higham Computing the polar decomposition with applications , 1986 .

[11]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[12]  Hiroyuki Ochiai,et al.  A concise parametrisation of affine transformation , 2015 .

[13]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[15]  Daniel Cohen-Or,et al.  Linear rotation-invariant coordinates for meshes , 2005, ACM Trans. Graph..

[16]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .