Title: The DegraBase: a database of proteolysis in healthy and apoptotic human cells Running Title: DegraBase: A Human α-aminome database

1! Title: The DegraBase: a database of proteolysis in healthy and apoptotic human cells Running Title: DegraBase: A Human α-aminome database Authors: Emily D. Crawford*1,2, Julia E. Seaman*1, Nick Agard1,3, Gerald W. Hsu1,4, Olivier Julien1, Sami Mahrus1,5, Huy Nguyen1,6, Kazutaka Shimbo1,7, Hikari A. I. Yoshihara1,8, Min Zhuang1, Robert J. Chalkley1, James A. Wellsǂ1,9 *Authors contributed equally to this work ǂ To whom correspondence should be addressed Institutions: 1Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94158 2Present address: DZNE, German Center for Neurodegenerative Diseases, D-72076 Tubingen, Germany. 3Present address: Department of Biocatalyst Characterization and Design, Codexis; Redwood City, CA 94063 4Present address: Dept. of Medicine, San Francisco VAMC, 4150 Clement Street, San Francisco, CA 94121 5Present address: Department of Oncology Biomarker Development, Genentech, South San Francisco, CA 94080 6Present address: Department of Hematology and Oncology, Kaiser Permanente, Honolulu, HI 96819 7Present address: Institute For Innovations, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, KawasakiKu, Kawasaki-Shi. 210-8681 Japan 8Present address: Centre Hospitalier Universitaire Vaudois (CHUV), EPFL SB IPSB GR-CO, CH F1 592 (Bâtiment CH), Station 6, CH-1015 Lausanne, Switzerland 9Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, 94158 MCP Papers in Press. Published on December 20, 2012 as Manuscript O112.024372

[1]  G. Salvesen,et al.  Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. , 2000, The Biochemical journal.

[2]  J. Tom,et al.  A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. , 1994, Science.

[3]  T. Arnesen Towards a Functional Understanding of Protein N-Terminal Acetylation , 2011, PLoS biology.

[4]  Benjamin F. Cravatt,et al.  Global Mapping of the Topography and Magnitude of Proteolytic Events in Apoptosis , 2008, Cell.

[5]  A. Burlingame,et al.  Global kinetic analysis of proteolysis via quantitative targeted proteomics , 2012, Proceedings of the National Academy of Sciences.

[6]  M. Bogyo,et al.  Aminopeptidase Fingerprints, an Integrated Approach for Identification of Good Substrates and Optimal Inhibitors* , 2009, The Journal of Biological Chemistry.

[7]  S. Martin,et al.  The CASBAH: a searchable database of caspase substrates , 2007, Cell Death and Differentiation.

[8]  Alexander Varshavsky,et al.  N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals , 2010, Science.

[9]  A. Varshavsky The N‐end rule pathway and regulation by proteolysis , 2011, Protein science : a publication of the Protein Society.

[10]  T. Arnesen,et al.  Protein alpha‐N‐acetylation studied by N‐terminomics , 2011, The FEBS journal.

[11]  J. Deisenhofer,et al.  Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. , 2001, Structure.

[12]  Peter R Baker,et al.  In-depth Analysis of Tandem Mass Spectrometry Data from Disparate Instrument Types*S , 2008, Molecular & Cellular Proteomics.

[13]  A. Berger,et al.  On the size of the active site in proteases. I. Papain. , 1967, Biochemical and biophysical research communications.

[14]  K. Gevaert,et al.  Improved visualization of protein consensus sequences by iceLogo , 2009, Nature Methods.

[15]  Julia E. Seaman,et al.  Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling pathways over specific targets and cleavage site motifs in apoptosis , 2012, Cell Death and Differentiation.

[16]  David T. Barkan,et al.  Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini , 2008, Cell.

[17]  James A Wells,et al.  Sampling the N-terminal proteome of human blood , 2010, Proceedings of the National Academy of Sciences.

[18]  Andreas Tholey,et al.  Mass spectrometry‐based proteomics strategies for protease cleavage site identification , 2012, Proteomics.

[19]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[20]  Kris Gevaert,et al.  Protein N-terminal acetyltransferases: when the start matters. , 2012, Trends in biochemical sciences.

[21]  D. Maltby,et al.  Inflammatory Stimuli Regulate Caspase Substrate Profiles* , 2010, Molecular & Cellular Proteomics.

[22]  K. Gevaert,et al.  MS‐driven protease substrate degradomics , 2010, Proteomics.

[23]  Bernd Thiede,et al.  ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells* , 2011, Molecular & Cellular Proteomics.

[24]  Oliver Schilling,et al.  Proteomic techniques and activity-based probes for the system-wide study of proteolysis. , 2010, Biochimie.

[25]  G. Barton,et al.  Classification and functional annotation of eukaryotic protein kinases , 2007, Proteins.

[26]  Benjamin F. Cravatt,et al.  Functional Interplay between Caspase Cleavage and Phosphorylation Sculpts the Apoptotic Proteome , 2012, Cell.

[27]  S. Mahrus,et al.  Tags for labeling protein N-termini with subtiligase for proteomics. , 2008, Bioorganic & medicinal chemistry letters.

[28]  A. Goldberg,et al.  The Sizes of Peptides Generated from Protein by Mammalian 26 and 20 S Proteasomes , 1999, The Journal of Biological Chemistry.

[29]  C. von Mering,et al.  PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life , 2012, Molecular & Cellular Proteomics.

[30]  M. Kurokawa,et al.  Caspases and Kinases in a Death Grip , 2009, Cell.

[31]  Alex Bateman,et al.  MEROPS: the database of proteolytic enzymes, their substrates and inhibitors , 2011, Nucleic Acids Res..

[32]  Ralph A. Bradshaw,et al.  N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families , 1998 .

[33]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[34]  S. Carr,et al.  A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology , 2008, Cell.

[35]  C. S. Brower,et al.  The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments , 2012, Proceedings of the National Academy of Sciences.

[36]  J. Burnier,et al.  Subtiligase: a tool for semisynthesis of proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[38]  K. Nakai,et al.  Prediction of subcellular locations of proteins: Where to proceed? , 2010, Proteomics.

[39]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[40]  J. Tobias,et al.  Universality and structure of the N-end rule. , 1989, The Journal of biological chemistry.

[41]  Philipp F. Lange,et al.  TopFIND 2.0—linking protein termini with proteolytic processing and modifications altering protein function , 2011, Nucleic Acids Res..

[42]  T. Rapoport Transport of proteins across the endoplasmic reticulum membrane. , 1992, Science.

[43]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[44]  W. K. Roberts,et al.  Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. , 1976, The Journal of biological chemistry.

[45]  Alma L. Burlingame,et al.  Quantitative profiling of caspase-cleaved substrates reveals different drug-induced and cell-type patterns in apoptosis , 2012, Proceedings of the National Academy of Sciences.