Monad compositions II: Kleisli strength
暂无分享,去创建一个
[1] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[2] A. Kock. Monads on symmetric monoidal closed categories , 1970 .
[3] M. Barr. Coequalizers and free triples , 1970 .
[4] S. Maclane,et al. Categories for the Working Mathematician , 1971 .
[5] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[6] John Launchbury,et al. Proceedings of the 1992 Glasgow Workshop on Functional Programming , 1992 .
[7] Philip Wadler,et al. Combining Monads , 1992 .
[8] Philip Wadler,et al. Glasgow Workshop on Functional Programming , 1992 .
[9] Philip S. Mulry,et al. Lifting Theorems for Kleisli Categories , 1993, MFPS.
[10] Philip S. Mulry,et al. Monads in Semantics , 1997, US-Brazil Joint Workshops on the Formal Foundations of Software Systems.
[11] F. W. Lawvere,et al. HOW ALGEBRAIC IS ALGEBRA , 2001 .
[12] Christoph Lüth,et al. Composing monads using coproducts , 2002, ICFP '02.
[13] Jürgen Koslowski,et al. A monadic approach to polycategories , 2003, CTCS.
[14] Robert Rosebrugh,et al. A basic distributive law , 2002 .
[15] Philip S. Mulry,et al. MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND RECURSIVE DISTRIBUTIVE LAWS , 2007 .