Stream function approach for determining optimal surface currents

[1]  Richard Courant Differential and Integral Calculus (Volume II) , 1936 .

[2]  F. B. Differential and Integral Calculus , 1937, Nature.

[3]  Walter Bartky,et al.  Numerical Calculation of a Generalized Complete Elliptic Integral , 1938 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[6]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[7]  R. Bulirsch,et al.  An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind , 1969 .

[8]  P. Lorrain,et al.  Electromagnetic fields and waves , 1970 .

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  Elise de Doncker,et al.  D01 Chapter-Numerical Algorithms Group, in samenwerking met de andere D01-contributors. 1) NAG Fortran Mini Manual, Mark 8, D01 18p., , 1981 .

[11]  R. Turner A Target Field Approach To Optimal Coil Design , 1986 .

[12]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[13]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[14]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[15]  A. Savini,et al.  Design of optimized gradient systems for magnetic resonance imaging , 1989, Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society,.

[16]  ANALYTICAL EXPRESSIONS FOR THE MAGNETIC FIELD OF PRACTICAL COILS , 1990 .

[17]  U. Reggiani,et al.  A method for the solution of an axisymmetric magnetic field synthesis problem , 1991 .

[18]  FIELD SYNTHESIS IN SOLENOIDAL MAGNETIC SYSTEMS , 1992 .

[19]  S. Pissanetzky Minimum energy MRI gradient coils of general geometry , 1992 .

[20]  Uk Oxford The NAG Fortran Library Manual , 1993 .

[21]  R. Turner,et al.  Gradient coil design: a review of methods. , 1993, Magnetic resonance imaging.

[22]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[23]  P. K. Banerjee The Boundary Element Methods in Engineering , 1994 .

[24]  Konrad Bajer,et al.  Hamiltonian formulation of the equations of streamlines in three-dimensional steady flows , 1994 .

[25]  Carlo A. Borghi,et al.  A global optimization method for the solution of a magnetic field synthesis problem , 1996 .

[26]  J. Keller,et al.  A pair of stream functions for three-dimensional vortex flows , 1996 .

[27]  Massimo Fabbri,et al.  A combined technique for the global optimization of the inverse electromagnetic problem solution , 1997 .

[28]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[29]  A. Gottvald The 4th International Workshop on Optimization and Inverse Problems in Electromagnetism , 1998 .

[30]  Mark Persoff UK , 1999, EC Tax Review.

[31]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[32]  S Crozier,et al.  A hybrid, inverse approach to the design of magnetic resonance imaging magnets. , 2000, Medical physics.

[33]  Use of stream functions for the computation of currents in thin circuits determination of the impedances , 2000 .

[34]  D. Tomasi Stream function optimization for gradient coil design , 2001, Magnetic resonance in medicine.

[35]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[36]  Mjh Martijn Anthonissen Local defect correction techniques : analysis and application to combustion , 2001 .

[37]  Stuart Crozier,et al.  A time-harmonic inverse methodology for the design of RF coils in MRI , 2002, IEEE Transactions on Biomedical Engineering.

[38]  M. Aliabadi,et al.  The Boundary Element Method , 2002 .