MOF Enhanced Dielectric Barrier Discharge Plasma Decomposition of H_2S in the Presence of Low Alkanes

[1]  Donghai Mei,et al.  Enhanced Surface Charge Localization Over Nitrogen-Doped In2O3 for CO2 Hydrogenation to Methanol with Improved Stability , 2023, ACS Catalysis.

[2]  Xuhao Li,et al.  Intelligent modeling of the hydrogen sulfide removal by deep eutectic solvents for the environmental protection , 2023, Separation and Purification Technology.

[3]  D. Agar,et al.  Experimental Splitting of Hydrogen Sulfide by Halogens for Application in Reaction Cycles , 2022, Chemie Ingenieur Technik.

[4]  Chang-jun Liu,et al.  Structural effect of Ni/TiO2 on CO methanation: improved activity and enhanced stability , 2021, RSC advances.

[5]  S. Kudryashov,et al.  Nonthermal plasma technique for the removal of hydrogen sulfide from methane , 2020 .

[6]  X. Tu,et al.  Synthesis, characterization and application of defective metal–organic frameworks: current status and perspectives , 2020, Journal of Materials Chemistry A.

[7]  A. Bogaerts,et al.  H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma , 2020, Plasma Chemistry and Plasma Processing.

[8]  Xin Zhang,et al.  Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFexAl12-xO19 hexaaluminate catalysts by H2S catalytic decomposition , 2020 .

[9]  Dehui Deng,et al.  Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst , 2020 .

[10]  N. Kaklidis,et al.  Hydrogen production by H2S decomposition over ceria supported transition metal (Co, Ni, Fe and Cu) catalysts , 2019, International Journal of Hydrogen Energy.

[11]  Yuming Xu,et al.  Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy , 2019, International Journal of Hydrogen Energy.

[12]  A. Tjønndal Collaborative innovation , 2018, Transformational Entrepreneurship.

[13]  Jicheng Zhou,et al.  Highly effective direct decomposition of H2S into H2 and S by microwave catalysis over CoS-MoS2/γ-Al2O3 microwave catalysts , 2017 .

[14]  Dongyun Chen,et al.  Urchin-Inspired TiO2@MIL-101 Double-Shell Hollow Particles: Adsorption and Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide , 2017 .

[15]  M. Rahimpour,et al.  Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies , 2016 .

[16]  Yadong Li,et al.  Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. , 2015, Angewandte Chemie.

[17]  Xuhui Feng,et al.  Kinetics of transformation on ZIF-67 crystals , 2015 .

[18]  G. Lu,et al.  An integrated photoelectrochemical-chemical loop for solar-driven overall splitting of hydrogen sulfide. , 2014, Angewandte Chemie.

[19]  C. Song,et al.  Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis , 2013 .

[20]  J. Whitehead,et al.  Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature , 2012 .

[21]  V. Biju,et al.  Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma , 2012 .

[22]  A. V. Phelps,et al.  The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling , 2012 .

[23]  V. Biju,et al.  Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge , 2012 .

[24]  Cameron Tropea,et al.  Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators , 2011 .

[25]  Xin Tu,et al.  Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor , 2011 .

[26]  S. Muknahallipatna,et al.  Energy efficiency of hydrogen sulfide decomposition in a pulsed corona discharge reactor , 2009 .

[27]  Hongjian Yan,et al.  Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation , 2008 .

[28]  A. Indarto,et al.  A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge , 2007 .

[29]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[30]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[31]  O. Saur,et al.  Claus catalysis and H2S selective oxidation , 1998 .

[32]  C. Badra Porous membrane reactors for hydrogen sulfide splitting , 1995 .

[33]  H. Suhr,et al.  Hydrogen sulfide dissociation in ozonizer discharges and operation of ozonizers at elevated temperatures , 1992 .

[34]  X. Tu,et al.  Plasma-enhanced N2 fixation in a dielectric barrier discharge reactor: effect of packing materials , 2021, Plasma Sources Science and Technology.

[35]  A. Wokaun,et al.  CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis , 2001 .