Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery

Abstract This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities ≥35 dBZ produced by convective clouds. Results indicate that CI may be forecasted ∼30–45 min in advance through the monitoring of key IR fields for convective clouds. This is made possible by the coincident use of three components of GOES data: 1) a cumulus cloud “mask” at 1-km resolution using VIS and IR data, 2) satellite-derived atmospheric motion vectors (AMVs) for tracking individual cumulus clouds, and 3) IR brightness temperature (TB) and multispectral band-differencing time trends. In effect, these techniques isolate only the cumulus convection in satellite imagery, track moving cumulus convection, and evaluate various IR...

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[3]  Tetsuya Theodore. Fujita,et al.  Satellite-tracked cumulus velocities , 1975 .

[4]  James F. W. Purdom,et al.  Some Uses of High-Resolution GOES Imagery in the Mesoscale Forecasting of Convection and Its Behavior , 1976 .

[5]  W. Woodley,et al.  Rain Estimation from Geosynchronous Satellite Imagery—Visible and Infrared Studies , 1978 .

[6]  R. Adler,et al.  Thunderstorm vertical velocities estimated from satellite data , 1979 .

[7]  D. McCann The Enhanced-V: A Satellite Observable Severe Storm Signature , 1983 .

[8]  R. Adler,et al.  Detection of Severe Midwest Thunderstorms Using Geosynchronous Satellite Data , 1985 .

[9]  Ronald M. Welch,et al.  Cumulus Cloud Properties Derived Using Landsat Satellite Data , 1986 .

[10]  Toshiro Inoue,et al.  An Instantaneous Delineation of Convective Rainfall Areas Using Split Window Data of NOAH-7 AVHRR , 1987 .

[11]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[12]  Weather from above : America's meteorological satellites , 1991 .

[13]  Charles A. Doswell,et al.  The AVHRR Channel 3 Cloud Top Reflectivity of Convective Storms , 1991 .

[14]  M. A. Engelstad,et al.  The three‐dimensional structure of cumulus clouds over the ocean: 1. Structural analysis , 1993 .

[15]  Cynthia K. Mueller,et al.  The Utility of Sounding and Mesonet Data to Nowcast Thunderstorm Initiation , 1993 .

[16]  Kwo-Sen Kuo,et al.  The three-dimensional structure of cumulus clouds over the ocean , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[17]  F. Bretherton,et al.  Upper tropospheric relative humidity from the GOES 6.7 μm channel: method and climatology for July 1987 , 1993 .

[18]  Richard L. Bankert,et al.  Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network , 1994 .

[19]  Gary P. Ellrod,et al.  Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery , 1995 .

[20]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[21]  T. Haar,et al.  A Comparative Analysis of the Temporal Variability of Lightning Observations and GOES Imagery , 1994 .

[22]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[23]  Timothy J. Schmit,et al.  Derived Product Imagery from GOES-8 , 1996 .

[24]  Michael Uddstrom,et al.  Satellite Cloud Classification and Rain-Rate Estimation Using Multispectral Radiances and Measures of Spatial Texture , 1996 .

[25]  Steven A. Ackerman,et al.  Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 µm , 1996 .

[26]  Vincenzo Levizzani,et al.  Multispectral, high-resolution satellite observations of plumes on top of convective storms , 1996 .

[27]  Steven J. Nieman,et al.  Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations , 1997 .

[28]  R. Welch,et al.  Automated Cloud Classification of Global AVHRR Data Using a Fuzzy Logic Approach , 1997 .

[29]  Johannes Schmetz,et al.  Monitoring deep convection and convective overshooting with METEOSAT , 1997 .

[30]  A Preliminary Investigation and Diagnosis of Weak Shear Summertime Convective Initiation for Extreme Southwest Alabama , 1998 .

[31]  Kwo-Sen Kuo,et al.  Clustering, randomness, and regularity in cloud fields: 5. The nature of regular cumulus cloud fields , 1998 .

[32]  G. S. Wade,et al.  Application of GOES-8/9 Soundings to Weather Forecasting and Nowcasting. , 1998 .

[33]  Christopher S. Velden,et al.  The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995. Part II: NOGAPS Forecasts , 1998 .

[34]  Rahul Ramachandran,et al.  Detection of cumulus cloud fields in satellite imagery , 1999, Optics & Photonics.

[35]  W. Paul Menzel,et al.  Observations and trends of clouds based on GOES sounder data , 2001 .

[36]  Steven E. Koch,et al.  An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights , 2004 .

[37]  W. Paul Menzel,et al.  Validation and Use of GOES Sounder Moisture Information , 2002 .

[38]  Milan Salek,et al.  Tornadoes within the Czech Republic: from early medieval chronicles to the "internet society" , 2003 .

[39]  Steven A. Rutledge,et al.  Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data , 2003 .

[40]  Terri Betancourt,et al.  NCAR Auto-Nowcast System , 2003 .

[41]  Gary P. Ellrod,et al.  Impact on volcanic ash detection caused by the loss of the 12.0 μm “Split Window” band on GOES Imagers , 2004 .

[42]  R. Rabin,et al.  Detecting winds aloft from water vapour satellite imagery in the vicinity of storms , 2004 .

[43]  J. Mecikalski,et al.  Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows , 2005 .

[44]  David B. Parsons,et al.  A Review of Convection Initiation and Motivation for IHOP_2002 , 2006 .

[45]  E. Rasmussen,et al.  Observations of Convection Initiation “Failure” from the 12 June 2002 IHOP Deployment , 2006 .