Analysis of broadband optical coupling from single photon emission to SiN_x optical waveguides in very near-infrared range

[1]  N. Mortensen,et al.  Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature. , 2021, Nanoscale.

[2]  J. Carolan,et al.  Ultra-low loss quantum photonic circuits integrated with single quantum emitters , 2022, Nature communications.

[3]  E. G. Melo,et al.  Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources , 2022, ACS Photonics.

[4]  E. Flagg,et al.  Multi-objective Inverse Design of Solid-state Quantum Emitter Single-photon Sources , 2022, 2206.01043.

[5]  G. Rainò,et al.  Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots , 2022, Nano letters.

[6]  Xingsheng Xu,et al.  Single-photon emission and multi-photon emission from single CdTeSe/ZnS quantum dots at room temperature , 2022, Europhysics letters.

[7]  P. Limsuwan,et al.  Optimization of end-fire coupling between an LED mid-IR light source and SiNx optical waveguides for spectroscopic sensing , 2021, Results in Optics.

[8]  C. Wongchoosuk,et al.  Nitrogen-doped carbon oxide quantum dots for flexible humidity sensor: Experimental and SCC-DFTB study , 2021, Vacuum.

[9]  Morteza Sasani Ghamsari Chip-Scale Quantum Emitters , 2021, Quantum Reports.

[10]  A. Poon,et al.  Integrated Si3N4 microresonator-based quantum light sources with high brightness using a subtractive wafer-scale platform. , 2021, Optics express.

[11]  C. Detavernier,et al.  Waveguide‐Coupled Colloidal Quantum Dot Light Emitting Diodes and Detectors on a Silicon Nitride Platform , 2021, Laser & Photonics Reviews.

[12]  D. Englund,et al.  High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture , 2021, Nature Photonics.

[13]  S. Manna,et al.  Bright Single Photon Emission from Quantum Dots Embedded in a Broadband Planar Optical Antenna , 2021, Advanced Optical Materials.

[14]  Navin B. Lingaraju,et al.  2022 Roadmap on integrated quantum photonics , 2021, Journal of Physics: Photonics.

[15]  G. J.,et al.  Enhancement of the indistinguishability of single photon emitters coupled to photonic waveguides , 2021 .

[16]  K. Vyrsokinos,et al.  Design of Si-rich nitride interposer waveguides for efficient light coupling from InP-based QD-emitters to Si3N4 waveguides on a silicon substrate. , 2020, Optics express.

[17]  Y. Fainman,et al.  Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. , 2020, Optics express.

[18]  Periklis Petropoulos,et al.  Silicon Nitride Photonics for the Near-Infrared , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  A. Galeckas,et al.  Influence of hydrogen implantation on emission from the silicon vacancy in 4H-SiC , 2020 .

[20]  A. Wieck,et al.  On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source , 2020, Nature Communications.

[21]  H. Akiyama,et al.  In situ wavelength tuning of quantum-dot single-photon sources integrated on a CMOS-processed silicon waveguide , 2019, Applied Physics Letters.

[22]  Silvania F. Pereira,et al.  Integration of colloidal PbS/CdS quantum dots with plasmonic antennas and superconducting detectors on a silicon nitride photonic platform. , 2019, Nano letters.

[23]  Dirk Englund,et al.  Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip , 2019, Nature Communications.

[24]  D. Geuzebroek,et al.  [INVITED] Silicon nitride photonic integration for visible light applications , 2019, Optics & Laser Technology.

[25]  S. Burger,et al.  Numerical Investigation of Light Emission from Quantum Dots Embedded into On‐Chip, Low‐Index‐Contrast Optical Waveguides , 2019, physica status solidi (b).

[26]  Dan Dalacu,et al.  On‐Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides , 2018, Advanced Quantum Technologies.

[27]  Pichet Limsuwan,et al.  Theoretical investigation of a low-voltage Ge/SiGe multiple quantum wells optical modulator operating at 1310 nm integrated with Si3N4 waveguides , 2018, AIP Advances.

[28]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[29]  L. Zschiedrich,et al.  Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber. , 2018, Optics express.

[30]  Yu Zhou,et al.  Room temperature solid-state quantum emitters in the telecom range , 2017, Science Advances.

[31]  T. Aubert,et al.  Colloidal Quantum Dots Enabling Coherent Light Sources for Integrated Silicon-Nitride Photonics , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Geert Morthier,et al.  Novel Light Source Integration Approaches for Silicon Photonics , 2017 .

[33]  Yasuhiko Arakawa,et al.  Ultraclean Single Photon Emission from a GaN Quantum Dot. , 2017, Nano letters.

[34]  Koji Yamada,et al.  A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer , 2017, Science and technology of advanced materials.

[35]  Sae Woo Nam,et al.  Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices , 2016, Nature Communications.

[36]  Dirk Englund,et al.  Bright Room‐Temperature Single‐Photon Emission from Defects in Gallium Nitride , 2016, Advanced materials.

[37]  B. Eggleton,et al.  CMOS-compatible photonic devices for single-photon generation , 2016 .

[38]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[39]  T. Aubert,et al.  Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots. , 2015, Nano letters.

[40]  Qian Wang,et al.  Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides. , 2015, ACS applied materials & interfaces.

[41]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[42]  D. van Thourhout,et al.  Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides. , 2015, Optics express.

[43]  T. Aubert,et al.  Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots. , 2015, Optics express.

[44]  Wim Bogaerts,et al.  Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-Infrared Wavelengths , 2015, IEEE Photonics Technology Letters.

[45]  P. Bhattacharya,et al.  Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire , 2013, Nature Communications.

[46]  G. Rainò,et al.  Nearly Temperature‐Independent Threshold for Amplified Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot‐in‐Rods , 2012, Advanced materials.

[47]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[48]  Jesper Mørk,et al.  Designs for high-efficiency electrically pumped photonic nanowire single-photon sources. , 2010, Optics express.

[49]  F. Pisanello,et al.  Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities , 2010 .

[50]  J. O'Brien Optical Quantum Computing , 2007, Science.

[51]  S. Prawer,et al.  Room temperature triggered single-photon source in the near infrared , 2007, 0708.1878.

[52]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[53]  A. Badolato,et al.  Optical properties of single InAs quantum dots in close proximity to surfaces , 2004 .

[54]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[55]  H. Weinfurter,et al.  Towards practical quantum cryptography , 1999 .

[56]  R. Soref,et al.  Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/ , 1991 .

[57]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .