Going for the goal

A new study shows that activity in the superior colliculus encodes the distance to the goal of the orienting movement, not the particular saccade or saccades used to get there.

[1]  E. Schröger,et al.  Is there pre-attentive memory-based comparison of pitch? , 2001, Psychophysiology.

[2]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[3]  A. Fuchs,et al.  Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey. , 2002, Journal of neurophysiology.

[4]  D. Pélisson,et al.  Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. , 1991, Journal of neurophysiology.

[5]  Risto Näätänen,et al.  Frequency Change Detection in Human Auditory Cortex , 1999, Journal of Computational Neuroscience.

[6]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[7]  David L. Sparks,et al.  Systematic errors for saccades to remembered targets: Evidence for a dissociation between saccade metrics and activity in the superior colliculus , 1994, Vision Research.

[8]  Israel Nelken,et al.  Responses of auditory-cortex neurons to structural features of natural sounds , 1999, Nature.

[9]  K. Reinikainen,et al.  Attentive novelty detection in humans is governed by pre-attentive sensory memory , 1994, Nature.

[10]  István Ulbert,et al.  Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study , 2001, Clinical Neurophysiology.

[11]  E. Keller,et al.  Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. , 1994, Journal of neurophysiology.

[12]  Brian H Scott,et al.  Context-Dependent Adaptive Coding of Interaural Phase Disparity in the Auditory Cortex of Awake Macaques , 2002, The Journal of Neuroscience.

[13]  D. P. Phillips,et al.  Responses of single neurones in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion , 2004, Experimental Brain Research.

[14]  E. M. Granger,et al.  Psychoacoustical contribution of each lateral lemniscus , 1992, Hearing Research.

[15]  M M Merzenich,et al.  Auditory processing parallels reading abilities in adults. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[17]  R H Wurtz,et al.  Activity of neurons in monkey superior colliculus during interrupted saccades. , 1996, Journal of neurophysiology.

[18]  N. Weinberger,et al.  Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. , 1991 .

[19]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[20]  I. Nelken,et al.  Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of Temporal and Spectral Context , 2002, The Journal of Neuroscience.

[21]  C. Schroeder,et al.  Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation , 1994, Brain Research.

[22]  M. Semple,et al.  Role of Synaptic Inhibition in Processing of Dynamic Binaural Level Stimuli , 1998, The Journal of Neuroscience.

[23]  I. Winkler,et al.  ‘Primitive intelligence’ in the auditory cortex , 2001, Trends in Neurosciences.

[24]  T. Carrell,et al.  Discrimination of speech-like contrasts in the auditory thalamus and cortex. , 1994, The Journal of the Acoustical Society of America.

[25]  D. Javitt Intracortical Mechanisms of Mismatch Negativity Dysfunction in Schizophrenia , 2000, Audiology and Neurotology.

[26]  Nina Kraus,et al.  Acoustic features and acoustic change are represented by different central pathways , 1995, Hearing Research.

[27]  R J Krauzlis,et al.  Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. , 2000, Journal of neurophysiology.

[28]  N J Gandhi,et al.  Discharge of superior collicular neurons during saccades made to moving targets. , 1996, Journal of neurophysiology.

[29]  Michael B. Calford,et al.  Monaural inhibition in cat auditory cortex. , 1995, Journal of neurophysiology.

[30]  R. Krauzlis,et al.  Neural Correlates of Target Choice for Pursuit and Saccades in the Primate Superior Colliculus , 2002, Neuron.

[31]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[32]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[33]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[34]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[35]  M Molnár,et al.  Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat--animal model of mismatch negativity. , 1987, Electroencephalography and clinical neurophysiology.

[36]  L E Mays,et al.  Signal transformations required for the generation of saccadic eye movements. , 1990, Annual review of neuroscience.

[37]  R. Andersen,et al.  The thalamocortical and corticothalamic conections of AI, AII, and the anteriior auditory field (AFF) in the cat: Evidence ofr two largely sergregarted systems of connections , 1980, The Journal of comparative neurology.

[38]  Brian C. J. Moore,et al.  Frequency Analysis and Pitch Perception , 1993 .

[39]  N. Kraus,et al.  Nonprimary auditory thalamic representation of acoustic change. , 1994, Journal of neurophysiology.

[40]  Daniel Guitton,et al.  Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts , 2003, Nature Neuroscience.

[41]  D L Sparks,et al.  Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. , 1997, Journal of neurophysiology.

[42]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Schreiner,et al.  Time course of forward masking tuning curves in cat primary auditory cortex. , 1997, Journal of neurophysiology.

[44]  R. Näätänen Attention and brain function , 1992 .

[45]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[46]  Dominique Morlet,et al.  Mismatch Negativity and N100 in Comatose Patients , 2000, Audiology and Neurotology.

[47]  R. Näätänen,et al.  The mismatch negativity in evaluating central auditory dysfunction in dyslexia , 2001, Neuroscience & Biobehavioral Reviews.

[48]  T. Picton,et al.  Mismatch Negativity: Different Water in the Same River , 2000, Audiology and Neurotology.

[49]  B. Delgutte Physiological Models for Basic Auditory Percepts , 1996 .

[50]  N. J. Gandhi,et al.  Two-dimensional saccade-related population activity in superior colliculus in monkey. , 1998, Journal of neurophysiology.

[51]  Shlomo Bentin,et al.  Unilateral Neglect after Right-Hemisphere Damage: Contributions from Event-Related Potentials , 2000, Audiology and Neurotology.

[52]  D Guitton,et al.  Movement of neural activity on the superior colliculus motor map during gaze shifts. , 1991, Science.

[53]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[54]  M. Semple,et al.  Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. , 2001, Journal of neurophysiology.