Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices

Abstract In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker–Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the proposed schemes preserve fundamental structural properties like nonnegativity of the solution without restriction on the size of the mesh and entropy dissipation. Moreover, all the methods presented here are at least second order accurate in the transient regimes and arbitrarily high order for large times in the hypothesis in which the flux vanishes at the stationary state. Suitable numerical tests will confirm the theoretical results.

[1]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[2]  Lorenzo Pareschi,et al.  Recent Advances in Opinion Modeling: Control and Social Influence , 2016, 1607.05853.

[3]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[4]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[5]  Luigi Preziosi,et al.  Modeling cell movement in anisotropic and heterogeneous network tissues , 2007, Networks Heterog. Media.

[6]  Zhongming Wang,et al.  A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker-Planck equation , 2019, J. Comput. Phys..

[7]  Pierre Degond,et al.  Kinetic Theory of Particle Interactions Mediated by Dynamical Networks , 2016, Multiscale Model. Simul..

[8]  Lorenzo Pareschi,et al.  Reviews , 2014 .

[9]  Alfio Borzì,et al.  Analysis of the Chang–Cooper discretization scheme for a class of Fokker–Planck equations , 2015, J. Num. Math..

[10]  Maxime Herda,et al.  Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations , 2018, Math. Comput..

[11]  Claire Chainais-Hillairet,et al.  ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.

[12]  Christian A. Yates,et al.  Inherent noise can facilitate coherence in collective swarm motion , 2009, Proceedings of the National Academy of Sciences.

[13]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[14]  Jingwei Hu,et al.  Fully Discrete Positivity-Preserving and Energy-Decaying Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure , 2018, 1811.11502.

[15]  Stéphane Dellacherie,et al.  On the Chang and Cooper scheme applied to a linear Fokker-Planck equation , 2010 .

[16]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[17]  Lorenzo Pareschi,et al.  On steady-state preserving spectral methods for homogeneous Boltzmann equations , 2014 .

[18]  E. K. Lenzi,et al.  Anomalous diffusion and anisotropic nonlinear Fokker–Planck equation , 2004 .

[19]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[20]  L. Preziosi,et al.  Kinetic models with non-local sensing determining cell polarization and speed according to independent cues , 2019, Journal of Mathematical Biology.

[21]  Giuseppe Toscani,et al.  Sharp Entropy Dissipation Bounds and Explicit Rate of Trend to Equilibrium for the Spatially Homogeneous Boltzmann Equation , 1999 .

[22]  G. Toscani,et al.  Kinetic models of opinion formation , 2006 .

[23]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[24]  Massimo Fornasier,et al.  A Kinetic Flocking Model with Diffusion , 2010 .

[25]  Giuseppe Toscani,et al.  Fokker–Planck equations in the modeling of socio-economic phenomena , 2017 .

[26]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[27]  Andrea Tosin,et al.  Markov jump processes and collision-like models in the kinetic description of multi-agent systems , 2019, Communications in Mathematical Sciences.

[28]  Giacomo Dimarco,et al.  Uncertainty Quantification for Kinetic Models in Socio–Economic and Life Sciences , 2017, 1706.07500.

[29]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[30]  Giuseppe Toscani,et al.  Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation , 1999 .

[31]  Mattia Zanella,et al.  Boltzmann-type models with uncertain binary interactions , 2017, 1709.02353.

[32]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[33]  Ansgar Jüngel,et al.  Convex Sobolev Inequalities Derived from Entropy Dissipation , 2011 .

[34]  Lorenzo Pareschi,et al.  Residual equilibrium schemes for time dependent partial differential equations , 2016 .

[35]  Francis Filbet,et al.  High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations , 2016, Journal of Scientific Computing.

[36]  Lorenzo Pareschi,et al.  Structure Preserving Schemes for Nonlinear Fokker–Planck Equations and Applications , 2017, Journal of Scientific Computing.

[37]  V. Dos Santos,et al.  A Conservative and Entropy Scheme for a Simplified Model of Granular Media , 2004 .

[38]  Lorenzo Pareschi,et al.  Structure Preserving Schemes for Mean-Field Equations of Collective Behavior , 2016, 1705.06360.

[39]  Lorenzo Pareschi,et al.  Structure preserving schemes for the continuum Kuramoto model: Phase transitions , 2018, J. Comput. Phys..

[40]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[41]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[42]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .