Melnikov Method for a Class of Planar Hybrid Piecewise-Smooth Systems

In this paper, we extend the well-known Melnikov method for smooth systems to a class of periodic perturbed planar hybrid piecewise-smooth systems. In this class, the switching manifold is a straight line which divides the plane into two zones, and the dynamics in each zone is governed by a smooth system. When a trajectory reaches the separation line, then a reset map is applied instantaneously before entering the trajectory in the other zone. We assume that the unperturbed system is a piecewise Hamiltonian system which possesses a piecewise-smooth homoclinic solution transversally crossing the switching manifold. Then, we study the persistence of the homoclinic orbit under a nonautonomous periodic perturbation and the reset map. To achieve this objective, we obtain the Melnikov function to measure the distance of the perturbed stable and unstable manifolds and present the theorem for homoclinic bifurcations for the class of planar hybrid piecewise-smooth systems. Furthermore, we employ the obtained Melnikov function to detect the chaotic boundaries for a concrete planar hybrid piecewise-smooth system.

[1]  Emilio Freire,et al.  Melnikov theory for a class of planar hybrid systems , 2013 .

[2]  Michal Fečkan,et al.  Homoclinic Trajectories in Discontinuous Systems , 2008 .

[3]  O. Makarenkov,et al.  Dynamics and bifurcations of nonsmooth systems: A survey , 2012 .

[4]  Zhengdong Du,et al.  Bifurcation of periodic orbits in a class of planar Filippov systems , 2008 .

[5]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[6]  Zhengdong Du,et al.  Melnikov method for homoclinic bifurcation in nonlinear impact oscillators , 2005 .

[7]  Peter Kukučka,et al.  Melnikov method for discontinuous planar systems , 2007 .

[8]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[9]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[10]  Michal Fečkan,et al.  Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems , 2012 .

[11]  Michal Fečkan,et al.  Bifurcation and chaos near sliding homoclinics , 2010 .

[12]  F. Vasca,et al.  Bifurcations in piecewise-smooth feedback systems , 2002 .

[13]  M. Kunze Non-Smooth Dynamical Systems , 2000 .

[14]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[15]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[16]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[17]  Tere M. Seara,et al.  The Melnikov Method and Subharmonic Orbits in a Piecewise-Smooth System , 2012, SIAM J. Appl. Dyn. Syst..

[18]  Wei Zhang,et al.  Melnikov-Type Method for a Class of Discontinuous Planar Systems and Applications , 2014, Int. J. Bifurc. Chaos.

[19]  Mario di Bernardo,et al.  Sliding bifurcations: a Novel Mechanism for the Sudden Onset of Chaos in dry Friction oscillators , 2003, Int. J. Bifurc. Chaos.

[20]  Alessandro Calamai,et al.  Mel’nikov Methods and Homoclinic Orbits in Discontinuous Systems , 2013 .

[21]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .