Projected Multilevel Monte Carlo Method for PDE with random input data

The order of convergence of the Monte Carlo method is 1/2 which means that we need quadruple samples to decrease the error in half in the numerical simulation. Multilevel Monte Carlo methods reach the same order of error by spending less computational time than the Monte Carlo method. To reduce the computational complexity further, we introduce a projected multilevel Monte Carlo method. Numerical experiments validate our theoretical results.

[1]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[2]  Andrea Barth,et al.  Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .

[3]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[4]  Assyr Abdulle,et al.  Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs , 2012 .

[5]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[6]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[7]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[8]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[9]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[10]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[11]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[12]  Michel Loève,et al.  Probability Theory I , 1977 .

[13]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[14]  Fabio Nobile,et al.  Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..

[15]  G. Reddien,et al.  On the reduced basis method , 1995 .

[16]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[17]  Jan Pomplun,et al.  Accelerated A Posteriori Error Estimation for the Reduced Basis Method with Application to 3D Electromagnetic Scattering Problems , 2010, SIAM J. Sci. Comput..

[18]  Pengfei Liu,et al.  A heterogeneous stochastic FEM framework for elliptic PDEs , 2014, J. Comput. Phys..

[19]  E. Çinlar Probability and Stochastics , 2011 .

[20]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[21]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[22]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[23]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[24]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[25]  B. Khoromskij,et al.  Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .

[26]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[27]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[28]  G. Arfken Mathematical Methods for Physicists , 1967 .

[29]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[30]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[31]  M. Loève Probability Theory II , 1978 .

[32]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[33]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[34]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[35]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[36]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[37]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[38]  Etienne Balmes,et al.  PARAMETRIC FAMILIES OF REDUCED FINITE ELEMENT MODELS. THEORY AND APPLICATIONS , 1996 .

[39]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[40]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[41]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[42]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[43]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[44]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[45]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[46]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[47]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[48]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[49]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .