Projected Multilevel Monte Carlo Method for PDE with random input data
暂无分享,去创建一个
[1] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[2] Andrea Barth,et al. Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .
[3] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[4] Assyr Abdulle,et al. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs , 2012 .
[5] M. Giles,et al. Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.
[6] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .
[7] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[8] Elisabeth Ullmann,et al. Computational aspects of the stochastic finite element method , 2007 .
[9] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[10] Miloš Zlámal,et al. On the finite element method , 1968 .
[11] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[12] Michel Loève,et al. Probability Theory I , 1977 .
[13] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[14] Fabio Nobile,et al. Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..
[15] G. Reddien,et al. On the reduced basis method , 1995 .
[16] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[17] Jan Pomplun,et al. Accelerated A Posteriori Error Estimation for the Reduced Basis Method with Application to 3D Electromagnetic Scattering Problems , 2010, SIAM J. Sci. Comput..
[18] Pengfei Liu,et al. A heterogeneous stochastic FEM framework for elliptic PDEs , 2014, J. Comput. Phys..
[19] E. Çinlar. Probability and Stochastics , 2011 .
[20] Guannan Zhang,et al. Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.
[21] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[22] Anthony T. Patera,et al. Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .
[23] I. Babuska,et al. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .
[24] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[25] B. Khoromskij,et al. Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .
[26] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[27] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[28] G. Arfken. Mathematical Methods for Physicists , 1967 .
[29] G. Stefanou. The stochastic finite element method: Past, present and future , 2009 .
[30] Fabio Nobile,et al. Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..
[31] M. Loève. Probability Theory II , 1978 .
[32] Max Gunzburger,et al. A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.
[33] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[34] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[35] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[36] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[37] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[38] Etienne Balmes,et al. PARAMETRIC FAMILIES OF REDUCED FINITE ELEMENT MODELS. THEORY AND APPLICATIONS , 1996 .
[39] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[40] P. Stern,et al. Automatic choice of global shape functions in structural analysis , 1978 .
[41] Peter K. Kitanidis,et al. Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .
[42] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[43] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[44] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[45] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[46] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[47] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[48] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[49] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .