Strain Hardening During Hot Compression Through Planar Dislocation and Twin-Like Structure in a Low-Density High-Mn Steel

[1]  I. Tamura,et al.  Thermomechanical Processing of High-Strength Low-Alloy Steels , 2013 .

[2]  A. Zarei‐Hanzaki,et al.  Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel , 2013 .

[3]  Kyung-Tae Park Tensile deformation of low-density Fe–Mn–Al–C austenitic steels at ambient temperature , 2013 .

[4]  D. Suh,et al.  Low-density steels , 2013 .

[5]  J. Cabrera,et al.  Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti , 2013 .

[6]  D. Raabe,et al.  Multistage strain hardening through dislocation substructure and twinning in a high strength and duc , 2012 .

[7]  A. Marandi,et al.  An investigation into the mechanical behavior of a new transformation-twinning induced plasticity steel , 2012 .

[8]  S. K. Kim,et al.  Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure , 2011 .

[9]  D. Raabe,et al.  Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite , 2011 .

[10]  L. P. Karjalainen,et al.  Hot ductility behaviour of high-Mn TWIP steels , 2011 .

[11]  S. Asgari,et al.  Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys , 2010 .

[12]  U. Prahl,et al.  Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels , 2009 .

[13]  S. Asgari,et al.  Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals , 2008 .

[14]  S. Allain,et al.  The development of a new Fe-Mn-C austenitic steel for automotive applications , 2006 .

[15]  Peter Neumann,et al.  Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes , 2003 .

[16]  O. Bouaziz,et al.  Modelling of TWIP effect on work-hardening , 2001 .

[17]  E. Cerreta,et al.  Formation of deformation twins in TiAl , 2001 .

[18]  S. Kalidindi,et al.  Influence of grain size and stacking-fault energy on deformation twinning in fcc metals , 1999 .

[19]  Woong Kil Choo,et al.  Carbon effect on ordering of γ′-Ni3Al in rapidly solidified Ni3AlC alloys , 1983 .

[20]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[21]  D. Suh,et al.  Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations , 2012 .

[22]  P. Scheller,et al.  Characterization of the TRIP/TWIP effect in austenitic stainless steels using Stress‐Temperature‐Transformation (STT) and Deformation‐Temperature‐Transformation (DTT) Diagrams , 2011 .

[23]  F. Frank,et al.  On deformation by twinning , 1955 .